1耶鲁大学天文学系,美国纽黑文52号,美国康涅狄格州06511; ryan.blackman@yale.edu 2 Department of Astronomy, The Ohio State University, 4055 McPherson Laboratory, 140 West 18th Avenue, Columbus, OH 43210, USA 3 Lowell Observatory, 1400 Mars Hill Road, Flagstaff, AZ 86001, USA 4 Ball Aerospace and Technologies Corporation, 1600 Commerce Street, Boulder, CO 80301, USA 5 Department of Physics, Yale University, 217 Prospect ST,New Haven,CT 06511,美国6物理与天文学系,旧金山州立大学,旧金山Holloway大街1600号,旧金山,CA 94132,美国7 DTU Space,National Space Institute,丹麦技术大学,Elektrovej 328,DK-2800 KGS技术大学。Lyngby,丹麦8号亚利桑那大学光学科学学院,1630 E University Boulevard,Tucson,Tucson,AZ 85719,美国9 Jet Propulsion实验室,加利福尼亚技术学院,4800 Oak Grove Drive,Pasadena,Pasadena,CA 9110 9 35899,美国11 INAF - Osservatorio Astromonico di Brera,通过Emilio Bianchi 46,I-23807 Merate,意大利Merate,12 Fibertech Optica Inc,330 Gage Avenue,Suite 1,Kitchener 1,Kitchener,On,On,ON,N2M 5C6,加拿大N2M 5C6,加拿大,2019年12月20日获得2019年12月20日; 20020年2月25日修订; 3月17日接受;出版于2020年4月28日
摘要。X射线探测器用于太空天体物理任务易受噪声,该光子受到工作能量范围以外的能量的光子引起的噪声;因此,需要有效的外部光学阻断过滤器来保护检测器免受偏离辐射的影响。这些过滤器在满足X射线探测器的科学要求中起着至关重要的作用,并且它们在任务生活中的适当操作对于实验活动的成功至关重要。我们研究了由氮化硅和铝制成的薄三明治膜,作为空间任务中高能检测器的光学阻滞过滤器。在这里,我们报告了厚度在40 nm至145 nm的sin膜的多技术表征的结果,两侧有几十纳米的纳米含量。,我们已经测量了同步辐射束线时的X射线传输,紫外线的排斥,可见和近红外辐射,X射线光电谱的铝表面上天然氧化物的量,通过原子力显微镜的样品表面的形态和蛋白质效应。
从长途光纤链路到短距离无线网络,数字通信系统越来越依赖于光子集成电路。然而,对更高带宽的追求正在将当前的解决方案推向极限。硅光子平台因其可扩展性和成本效益而备受赞誉,它依赖于诸如硅上 III-V 族元素异质外延[ 3 ]或在 SOI 波导上放置锗鳍片[ 1 ]等解决方案,以实现超高速应用。在所有硅光子技术中,氮化硅 (SiN) 材料平台具有一些独特的优势:它们提供非常低损耗的波导,由于非常高 Q 值的谐振器而具有非常好的滤波器,并且由于没有双光子吸收(与硅相比),因此可以处理非常高的功率。然而在 SiN 上,无法直接生长。一种可能的解决方案是将 III-V 族元素晶圆键合到 SiN 波导上[ 2 ]。在这项工作中,我们提出了一种多功能且可扩展的方法,通过微转印(µTP)单行载流子(UTC)光电二极管在 SiN 上创建波导耦合光电探测器。
摘要:本文结合数值分析和实验验证,研究了基于氮化硅 (Si3N4) 平台的脊形波导的波长相关灵敏度。在第一部分中,详细分析了 Si3N4 脊形波导的模式特性,重点分析了有效折射率 (neff)、衰减场比 (EFR) 和传播损耗 (αprop)。这些参数对于理解引导光与周围介质的相互作用以及优化用于传感应用的波导设计至关重要。在第二部分中,通过实验证明了基于 Si3N4 波导的赛道环谐振器 (RTRR) 的波长相关灵敏度。结果表明,随着波长从 1520 nm 移至 1600 nm,RTRR 的灵敏度明显提高,从 116.3 nm/RIU 上升到 143.3 nm/RIU。这一趋势为设备在较长波长下的增强性能提供了宝贵的见解,强调了其在需要在该光谱范围内高灵敏度的应用方面的潜力。
I。常规的台式光谱仪通常很大,并且仅限于实验室环境。随着综合光子学的发展,光谱仪的微型化导致了适用于实验室以外的更多应用,包括农业分析和水下研究[1],[2]。它还可以启用实验室芯片应用程序[3],[4],[5]。基于其工作原理,可以将集成光谱仪大致分为使用分散,窄带滤波,傅立叶变换或数值重建的类别[6]。第一个类别具有分散光学元件,它们在空间上分开不同的频率,包括echelle光栅[7]和阵列的波导格栅(AWG)[8],[9]。第二种类型使用窄带过滤器(例如环形分解器和马赫Zehnder干涉仪(MZI)[10],[11],[11],[12],选择性地将不同的光谱成分传输到不同的检测器。第三个通常称为傅立叶变换型体镜检查(FTS),其中通过在时间或空间域中转换干涉信息,使用傅立叶变形[13],[14],[15]获得频谱。最后一个类别采用了一系列具有不同光谱响应的组件,并从组合信号[16],[17]中重建光谱。它依赖于
集成克尔量子频率梳 (QFC) 具有产生多个可扩展量子态的潜力,已成为宽带纠缠的紧凑、稳定和基本资源。在这里,我们构建了一个通过片上氮化硅微环谐振器设计二分纠缠 QFC 的平台。通过建立克尔非线性微谐振器的系统量子动力学,我们的平台可以支持多达 12 个连续变量量子模式,形式为受磁滞影响的六个同时双模压缩对。频率模式对的纠缠度取决于谐振器结构和环境温度。通过调节腔体温度,我们可以在特定的注入泵浦功率和泵浦失谐下优化纠缠性能。我们全面的 QFC 设计流程和纠缠分布控制可以改善纠缠的产生和优化。
免责声明 - 本信息按“原样”提供,不作任何陈述或保证。Imec 是 imec International(IMEC International,根据比利时法律成立的法人实体,名称为“stichting van openbaar nut”)、imec Belgium(由弗兰德政府支持的 IMEC vzw)、imec the Dutch(Stichting IMEC Nederland)、imec China(IMEC Microelectronics (Shanghai) Co. Ltd.)、imec India(IMEC India Private Limited)、imec San Francisco(IMEC Inc.)和 imec Florida(IMEC USA Nanoelectronics Design Center Inc.)活动的注册商标。
摘要:氮化硅 (Si3N4) 是开发低损耗光子集成电路的理想候选材料。然而,标准光纤和 Si3N4 芯片之间的有效光耦合仍然是一项重大挑战。对于垂直光栅耦合器,较低的折射率对比度会导致较弱的光栅强度,从而导致较长的衍射结构,限制了耦合性能。随着混合光子平台的兴起,采用多层光栅排列已成为提高 Si3N4 耦合器性能的一种有前途的策略。在本文中,我们介绍了一种用于带有非晶硅 (α-Si) 覆盖层的 Si3N4 平台的高效表面光栅耦合器的设计。表面光栅完全形成在 α-Si 波导层中,利用亚波长光栅 (SWG) 设计的超材料,可通过单步图案化轻松实现。这不仅为控制光纤-芯片耦合提供了额外的自由度,而且还有助于移植到现有的代工厂制造工艺。使用严格的三维 (3D) 有限差分时域 (FDTD) 模拟,设计了一种超材料工程光栅耦合器,其耦合效率为 − 1.7 dB,工作波长为 1.31 µ m,1 dB 带宽为 31 nm。我们提出的设计为氮化硅集成平台提供了一种开发高效光纤芯片接口的新方法,可用于数据通信和量子光子学等广泛应用。
光子集成电路(图片)最初是为满足光纤数据传输系统的需求而设计的[1]。近年来,我们目睹了光子整合技术的爆发,并具有不断增长的应用范围。高度活跃的字段包括光传感器[2],医疗应用[3],光学频率梳子生成[4]和量子技术[5]仅举几例。综合光子技术的持续进展是由大型生态系统的开发引起的,包括提供开放访问制造服务的铸造厂[6]。硅光子学基于高度成熟的CMOS制造过程,在此scenario中起着重要的作用[6]。尽管传统的绝缘体硅(SOI)技术仍然在CMOS平台中占主导地位,但基于氮化硅波导的图片对于某些应用来说尤其重要[7]。与硅引导结构相比,用氮化硅制造的结构可提供较小的线性和非线性固有传播损失,较低的热光系数以及一个较大的透明度区域,该区域为从可见的中部到中央验收的应用打开了平台。在负面,氮化硅的主要缺点源于其折射率小于硅的折射率。因此,氮化硅波导中的场限制较差,并且弯曲波导切片中的辐射损失变大[8]。这最终限制了集成设备中曲率的最小可接受半径,因此限制了集成规模。可以通过结合次波长的光栅[9]或侧凹槽[10,11]来修改波格的几何形状来减少弯曲整合波导中的辐射损失。尽管如此,这些设计策略需要其他非标准制造步骤。使用匹配的弯曲[12]允许通过将弯曲的总范围调整为前两种模式的节拍长度的倍数,从而减轻恒定曲率部分与直线输入和输出波导之间的过渡处的损失。可以应用于任意长度的弯曲部分的替代方法是通过将相对侧向移动应用于直的和弯曲的波导[13,14],以最大化不连续性的模式耦合。其他方案基于弯曲波导宽度[15-18]的进行性修改或使用三角学[19],Spline [10,20,21],Euler [22-25],Bezier [16,26]或N -djustable [27]功能。弯曲辐射损失也可以使用不同的算法最小化[28 - 34]。
人类健康是由遗传学(G)和环境(E)决定的。这在暴露于同一环境因素的个体中清楚地说明了这一点。尚未开发出基因 - 环境相互作用(GXE)效应的定量度量,在某些情况下,甚至还没有就该概念达成明确的共识。例如,癌症是否主要来自“运气不好”还是“糟糕的生活方式”。在本文中,我们提供了一组GXE相互作用的示例,作为发病机理的驱动因素。我们强调了epige-netic法规如何代表分子碱基的共同连接方面。我们的论点收敛于GXE记录在细胞表观基因组中的概念,该概念可能代表了解宣告这些多半复杂的调节层的关键。开发一个解码此表观遗传信息的钥匙将提供疾病风险的定量度量。类似于引入估计生物年龄的表观遗传时钟,我们挑衅地提出了“表观遗传评分表”的理论概念,以估计疾病风险。