这是由Scholarworks@UTEP免费带给您的。已被授权的ScholarWorks@UTEP管理员纳入公开访问论文和论文。有关更多信息,请联系lweber@utep.edu。
为了制备高击穿电压薄膜,对高击穿电压材料有许多要求,[5,12]例如,介电常数要尽可能大,介电材料在硅衬底上必须是热力学稳定的。[6,8,13]目前对击穿强度的研究工作都是在PECVD/LPCVD上进行的,[10,14]但本实验采用ICP-CVD模型制备氮化硅薄膜,可以提供更多的能量,促进反应气体的分解,制备出击穿强度更大的薄膜。氮化硅薄膜中的氢含量对薄膜的击穿强度影响很大。[15]在薄膜的成分中,Si-H键在薄膜的组成中起着基础性的作用,随着薄膜中氢含量的变化,薄膜的电学性质将发生变化。 [6,16,17]当薄膜中氢含量较高时,硅的悬挂键会被H填充,会增加薄膜的稳定性,提高击穿强度。[18]但关于H含量与薄膜击穿电压的关系,在ICP-CVD机上进行的实验很少,结论也不完善,因此本实验采用ICP-CVD机进行薄膜沉积。[19,20]
区域,从而增强了光学强度。然而,如此高的光学结构增加了纳米级不均匀性引起的散射损失的敏感性。氮化硅是一种介电材料,具有相对较大的非线性指数系数和一个从紫外线到中红外的宽带透明度窗口。其折射率与二氧化硅形成鲜明对比允许高分并控制波导几何形状的分散体。在过去几年中,这个材料平台作为依赖KERR效应的非线性光学应用程序的主力,从微型BOMB的生成到副标。在本文工作中,我们专注于开发高级制造技术,以实现氮化硅波导的实现。仪表长的高填充波导据报道,有1.4 db/m的阶段损失创纪录的低损失和分散工程的mi- croResonators,质量为1900万。基于这项技术,我们证明了带有光电检测的重复速率的八度跨度相干微膜和小鳄鱼的设备面积小于1毫米2,即比艺术的状态小的数量级。高产量和超损坏Si 3 N 4波导也使我们在整合波导中的第一次连续波参数放大器也可以实现,当以相位敏感的模式运行时,表现出9.5 dB的增益为9.5 dB,噪声效率为1.2 db。
免责声明 - 本信息按“原样”提供,不作任何陈述或保证。Imec 是 imec International(IMEC International,根据比利时法律成立的法人实体,名称为“stichting van openbaar nut”)、imec Belgium(由弗兰德政府支持的 IMEC vzw)、imec the Dutch(Stichting IMEC Nederland)、imec China(IMEC Microelectronics (Shanghai) Co. Ltd.)、imec India(IMEC India Private Limited)、imec San Francisco(IMEC Inc.)和 imec Florida(IMEC USA Nanoelectronics Design Center Inc.)活动的注册商标。
免责声明 - 本信息按“原样”提供,不作任何陈述或保证。Imec 是 IMEC International(根据比利时法律成立的法人实体,名称为“stichting van openbaar nut”)、imec Belgium(由弗兰德政府支持的 IMEC vzw)、imec the Dutch(Stichting IMEC Nederland,由荷兰政府支持的 Holst Centre 的一部分)、imec Taiwan(IMEC Taiwan Co.)、imec China(IMEC Microelectronics (Shanghai) Co. Ltd.)、imec India(Imec India Private Limited)、imec Florida(IMEC USA 纳米电子设计中心)活动的注册商标。
图1。多价逻辑薄膜元素带有加密。(a)蒸发诱导的自组装(EISA)CNC膜上iTO/玻璃基板上。通过精确降低NaCl溶液,CNC的手性螺距通过相对湿度控制(比例尺为1mm)调节。(b)由光子带隙(相对湿度,H和盐浓度,S)和光子能量(波长,W和极化状态,P)触发的生物多值逻辑系统的图形符号,并通过以下转换后的字母字母来解码电信号。(c)基于集成电路的光通信启用了主动手性生物介电层。特定的输入提供了光学通信,并通过在系统中调整H通过加密传输“制造”信号。
从长途光纤链路到短距离无线网络,数字通信系统越来越依赖于光子集成电路。然而,对更高带宽的追求正在将当前的解决方案推向极限。硅光子平台因其可扩展性和成本效益而备受赞誉,它依赖于诸如硅上 III-V 族元素异质外延[ 3 ]或在 SOI 波导上放置锗鳍片[ 1 ]等解决方案,以实现超高速应用。在所有硅光子技术中,氮化硅 (SiN) 材料平台具有一些独特的优势:它们提供非常低损耗的波导,由于非常高 Q 值的谐振器而具有非常好的滤波器,并且由于没有双光子吸收(与硅相比),因此可以处理非常高的功率。然而在 SiN 上,无法直接生长。一种可能的解决方案是将 III-V 族元素晶圆键合到 SiN 波导上[ 2 ]。在这项工作中,我们提出了一种多功能且可扩展的方法,通过微转印(µTP)单行载流子(UTC)光电二极管在 SiN 上创建波导耦合光电探测器。
光子集成电路(图片)最初是为满足光纤数据传输系统的需求而设计的[1]。近年来,我们目睹了光子整合技术的爆发,并具有不断增长的应用范围。高度活跃的字段包括光传感器[2],医疗应用[3],光学频率梳子生成[4]和量子技术[5]仅举几例。综合光子技术的持续进展是由大型生态系统的开发引起的,包括提供开放访问制造服务的铸造厂[6]。硅光子学基于高度成熟的CMOS制造过程,在此scenario中起着重要的作用[6]。尽管传统的绝缘体硅(SOI)技术仍然在CMOS平台中占主导地位,但基于氮化硅波导的图片对于某些应用来说尤其重要[7]。与硅引导结构相比,用氮化硅制造的结构可提供较小的线性和非线性固有传播损失,较低的热光系数以及一个较大的透明度区域,该区域为从可见的中部到中央验收的应用打开了平台。在负面,氮化硅的主要缺点源于其折射率小于硅的折射率。因此,氮化硅波导中的场限制较差,并且弯曲波导切片中的辐射损失变大[8]。这最终限制了集成设备中曲率的最小可接受半径,因此限制了集成规模。可以通过结合次波长的光栅[9]或侧凹槽[10,11]来修改波格的几何形状来减少弯曲整合波导中的辐射损失。尽管如此,这些设计策略需要其他非标准制造步骤。使用匹配的弯曲[12]允许通过将弯曲的总范围调整为前两种模式的节拍长度的倍数,从而减轻恒定曲率部分与直线输入和输出波导之间的过渡处的损失。可以应用于任意长度的弯曲部分的替代方法是通过将相对侧向移动应用于直的和弯曲的波导[13,14],以最大化不连续性的模式耦合。其他方案基于弯曲波导宽度[15-18]的进行性修改或使用三角学[19],Spline [10,20,21],Euler [22-25],Bezier [16,26]或N -djustable [27]功能。弯曲辐射损失也可以使用不同的算法最小化[28 - 34]。