Carnot电池(CB)已被开发为竞争性的大规模储能技术。但是,低温CB的低功率到功率(P2P)抑制其应用。考虑到可能的实际操作方案,在本工作中提出了一种新型的低温CB配置,它通过将液化天然气(LNG)冷能将其整合到有机朗金循环(ORC)中作为散热器。通过结合ORC和LNG涡轮机产生的功率来实现P2P效率的突破。通过已建立的热力学模型进行了LNG-CB和碱性CB(水冷却)的能量和自我分析。还研究了关键操作参数对系统性能的影响。所提出的LNG-CB在将P2P效率提高2.31升至4.52倍的方面,比基本CB具有巨大的优势。在120 O C的热量存储温度和7 MPa的LNG压力下,最大P2P效率为222.47%。该LNG-CB可以进一步优化,并有望将来建造实用的大规模储能系统。
300-360°C。 在这些温度下,为了抑制沸腾,HTL过程以1400-2800psig运行。 这些条件低于水的临界点,尽管已经进行了超临界HTL处理。 在加工条件下,进料中的有机材料分解以形成生物油和一些气体(主要是甲烷和二氧化碳)。 转换步骤中的停留时间因进料的性质和过程条件而异,但在10-30分钟内。 迄今为止的测试表明,转换步骤可以在搅拌的储罐反应器或塞流动反应器中执行,其性能之间的差异很小。 在加工压力和温度下,水的奇怪特性是,溶剂特性是从在较低压力和温度下观察到的水的溶剂特性反转。 具体而言,饲料的有机成分降解产生的生物油变得可溶,而无机材料几乎不溶于溶解。 这对过程具有非常有用的含义。 它使无机分数可以在降水步骤中与大部分水和油分开。 一旦油和水冷却,生物油将不再溶于水中。 机油和水以及相关的气体可以在3相分离器中分离。 图2显示了藻类饲料中HTL的试验植物测试的产物。300-360°C。在这些温度下,为了抑制沸腾,HTL过程以1400-2800psig运行。这些条件低于水的临界点,尽管已经进行了超临界HTL处理。在加工条件下,进料中的有机材料分解以形成生物油和一些气体(主要是甲烷和二氧化碳)。转换步骤中的停留时间因进料的性质和过程条件而异,但在10-30分钟内。迄今为止的测试表明,转换步骤可以在搅拌的储罐反应器或塞流动反应器中执行,其性能之间的差异很小。在加工压力和温度下,水的奇怪特性是,溶剂特性是从在较低压力和温度下观察到的水的溶剂特性反转。具体而言,饲料的有机成分降解产生的生物油变得可溶,而无机材料几乎不溶于溶解。这对过程具有非常有用的含义。它使无机分数可以在降水步骤中与大部分水和油分开。一旦油和水冷却,生物油将不再溶于水中。机油和水以及相关的气体可以在3相分离器中分离。图2显示了藻类饲料中HTL的试验植物测试的产物。
在图1中显示的蒸气压缩周期中有4个主要成分;机械加压器,冷凝器,膨胀阀和蒸发器。由于它是一个周期,因此没有开始或终点要考虑,因此此描述将从蒸发器和兼容性之间的制冷剂开始。在这一点上,制冷剂是一种气体,已经蒸发了。然后通过压缩机将其挤压到一个小得多的空间,从而使其变得非常热。这是使用电能的地方;压缩蒸气需要一些能量。现在,这种热气已进入冷凝器。在热泵中,冷凝器是一种热交换器,它将是一种卷曲的线圈,制冷剂慢慢奔跑,通过空气或水冷却。此空气或水是您取出热量的地方;热量自然会从非常热的制冷剂流入冷却器或水中,这变成了家中的热水或温暖的空气。返回制冷剂,现在已经大量冷却,并将其冷凝回到液体中。穿过膨胀阀,它会进一步冷却,其中一些蒸发是由低压引起的。这种冷液体和气体混合物通过蒸发器泵送。蒸发器是另一种热交换器,这次是外面的,这使冷热剂可以被外部空气加热并蒸发,将制冷剂返回到我们开始本循环时,在经过压缩机之前,将其恢复到该州的状态。
YK 1265 是一款 60 kW 带外腔的电视速调管,已在电视发射机中验证了数年,并已在连续波应用中验证了上百次。由于其紧凑的设计,电磁聚焦所需的功率仅为 1 kW 左右。收集器适用于蒸汽、蒸汽冷凝或水冷却。该管可与固定频率腔一起使用(仅可调约490-510 MHz),专为 500 MHz 应用而设计,或与标准腔一起使用。这些腔体的优点是可以使用数字频率指示器进行连续可调,以便进行粗调,从而为连续波操作提供 470 Mhz 至 810 MHz 的频率范围。输出耦合可在很宽的范围内调节,以优化所有应用。有了改进的腔体、漂移管和插座空气冷却系统,速调管不需要单独的漂移管 5 管。所需空气约为。3.2 m /min,压降为 5.5 mbar 或 550 Pa。可实现 65 kW 的饱和输出功率,饱和效率为 45 k。增益大于 40 dB。束流电压为 25.5 kV,束流为 5.7 A。方便的备件储存和快速的库存交货是使用标准 TV 速调管及其标准配件进行连续波操作的两个优点。YK 1265 拥有经过充分验证的技术和长寿命预期。由于 YK 1265 的设计没有改变,因此监测体电流将有助于简化调谐过程。
微生物受影响的腐蚀(MIC)被广泛认为是由各种微生物的存在和活性引起的腐蚀[1]。由于其对海洋钢的影响,MIC在全球港口和港口操作员面临着重要的金融和安全挑战。每年使用2.5万亿美元用于直接腐蚀费用[2,3],其中20%归因于麦克风[4],并且数据不包括与生产损失,员工培训,研发和预防性维护有关的额外经济成本。与腐蚀相关的损失会影响关键的结构部门,包括海上油气管道,船体船体,水冷却系统,航空燃油箱,下水道系统和饮用水分配网络[5](图1)。例如,自1970年代以来,核电站经历了许多与腐蚀有关的失败,导致该行业的成本数十亿欧元[6,7]。因此,经济因素正在推动微生物腐蚀研究的持续增长[3]。最近,越来越多的与麦克风有关的研究尚未进行。尽管麦克风研究是一个具有挑战性的多学科领域,但在过去十年中,典型研究的实质性进步已经取得了长足的进步。这篇综述总结了MIC和微生物影响腐蚀抑制(MICI)过程的进展,并通过数据挖掘研究对海洋环境中微生物腐蚀进行了更新我们的理解。
这项研究旨在通过解决灰尘积累和温度变化的双重挑战来提高多晶硅太阳能光伏面板的效率。该研究研究了在面板的顶部表面上应用疏水石墨烯纳米涂层的影响,以防止灰尘堆积,并与顶部冷却系统结合以调节面板温度。在阳光明媚的条件下,在印度哥印拜陀的室外实验在印度哥印拜陀进行了40天。用各种配置测试了总共八个相同的光伏面板,并记录了玻璃温度,泰勒温度,输出功率,太阳辐射,环境温度和风速等性能参数。实验结果表明,与Dusty面板相比,与未涂层的,手动清洁的面板相比,石墨烯纳米涂层将面板温度降低了9.36%。与未涂层的,无冷的面板相比,单独使用纳米涂层的功率输出和效率分别提高了4.16%和3.3%。此外,与未涂层的,无冷的面板相比,纳米涂层的顶部水冷面板的产出功率提高了16.87%,效率为13.22%,功率为3.11%,效率为2.82%,与未涂层的水冷面板相比。这些结果表明,石墨烯纳米涂层和水冷却的联合应用有效地提高了光伏模块的性能和寿命,通过减少粉尘积累和调节温度。关键词:PV性能,灰尘沉积,纳米涂料,最高水冷却
对含水层热量储存(ATE)中技术的描述,在地下含水层中存储过多的热量,以便在以后恢复热量。热能被存储为温暖的地下水。地下水也被用作载热到地下的载体。因此,热能是通过从含水层从含水层从含水层从含水层中生产和注入地下水来存储和回收的。ATES系统的容量从0.33 MW到20 MW(Fleuchaus等人2018)。通常,ATES是季节性的。在夏季,通过热交换器转移到寒冷的地下水中,来自天然气或燃煤发电厂,太阳能或热电联产厂的过量热量被转移到寒冷的地下水中。由此产生的温暖地下水将热量运输到含热量的含水层中。在冬季,通过逆转生产和注入井的流量,将ATES运行相反的方向。现在,通过热交换器从温暖的地下水中回收了存储的热量,并用于加热目的,而所产生的冷地下水则在含水层中重新注射。通常,注入和生产井之间的距离在1000 m至2000 m之间(Stober and Bucher 2014)。含水层的深度也有所不同。在柏林,例如,在浅水含水层中,ATE的深度在30 m至60 m之间,而在Neuruppin中,它约为1700 m。在荷兰,大多数ATES系统在地下中使用20 m至150 m之间的含水层(Bloemendal和Hartog 2018)。过多热量与深度相对应,在不同温度下进行热量储藏。低温(LT)ate在30°C以下运行,通常位于浅含水层中,中等温度(MT)ates是指在30°C和50°C之间的温度范围和高温(HT)ATES在50°C和更高的温度(Lee 2013)下运行(Lee 2013)。与MT-和HT-ates相比,由于LT-ates的低温,热泵可将温度提高到加热相关建筑物(例如40°C)所需的水平。同时将提取的地下水冷却至5°C和8°C之间的温度。随后,将冷地下水重新注入冷井中。在夏季,可以使用寒冷井中的地下水有效冷却建筑物。由于热泵的冷却过程,该水被加热到14°C和18°C之间的温度范围。随后,加热的地下水是通过LT-ates的温暖井来存储的,以便冬季以后恢复。如果冷却在上一个冬季存储的低温地下水旁边不需要设施,则称为免费冷却。