电沉积是制备合金的重要方法之一。利用电沉积合成合金的方法引起了广泛关注,因为它能够在室温下在金属基材上制备合金薄膜。到目前为止,含有六价铬(Cr 6 +)离子的电解槽已用于金属铬的电沉积。然而,众所周知,Cr 6 + 离子会引起有害的环境污染[4,5]。在欧盟,WEEE/RoHS(废弃电子电气设备/限制在电子电气设备中使用某些有害物质)指令限制使用Cr 6 + 离子[6]。因此,作为一种替代工艺,许多研究人员提出了从含三价铬(Cr 3 +)离子的电解槽中电沉积金属铬合金(例如 Co e Cr 和 Ni e Cr 合金 [7]、Fe e Cr 合金 [8] 和 Fe e Cr e Ni 合金 [9])。然而,众所周知,电沉积的电流效率受到很大限制,因为 Cr/Cr 3 + 的标准电极电位为 0.937 V(vs. Ag/AgCl/饱和 KCl),远不如铁族金属(例如 Ni/Ni 2 +、Co/Co 2 + 和 Fe/Fe 2 +)的电位高 [10]。在从水溶液中电沉积次贵金属的过程中,随着电流密度的增加,阴极附近的pH值升高[11]。pH值升高的原因是高电流密度下氢气析出速率高,导致阴极附近的H+离子消耗速率高。因此,在简单的水溶液中,Cr3+离子在高电流密度下会与阴极附近的六个水分子形成复合物[Cr(H2O)6]3+。具体而言,这些[Cr(H2O)6]3+离子会在酸性pH区(pH > 4.5)通过羟桥反应形成羟基桥接胶体聚合物[12,13]。阴极附近的这种胶体聚合物会抑制金属铬的电沉积。因此,通常在水溶液中加入甘氨酸、尿素或 N,N-二甲基甲酰胺 (DMF) 等络合剂来抑制 [Cr(H 2 O) 6 ] 3 + 离子的形成。在这些络合剂中,DMF 是众所周知的在金属电沉积过程中减少氢析出的有效络合剂 [14]。之前有几种
制造人工膜为人类提供洁净水,关键是制造出大小相似的通道。[2,3] 商业上使用的渗透膜大多由聚合物制成,其分子链通常随机排列,因此孔径分布较宽。[4] 合成纳米导管,如碳和氮化硼纳米管[5–7] 以及通过有机合成制成的孔[8] ,能够在分子水平上控制通道特性,并已被证明可以使水快速高效地流过它们。[5,6] 然而,制造直径小于 1 纳米 [3,9] 的孔隙仍然具有挑战性,这些孔隙可以阻挡 Na + 、K + 和 Cl – 等小离子。此外,将大量平行的通道组装成边界清晰的膜也是一项技术挑战。[3,4] 二维材料的出现为创建这种小通道提供了进一步的途径。近期的例子包括石墨烯中制成的亚纳米孔[10,11],以及在氧化石墨烯[12]和二硫化钼层之间组装的二维通道[13]。所得膜表现出选择性离子渗透,但仍然缺乏可以阻止所有离子通过的孔结构。因此,开发具有高离子选择性通道的新型二维材料是十分有必要的,这可以为先进的渗透膜奠定基础。为了应对这一挑战,有人提出利用分子自组装技术辅助辐射诱导交联来创建具有明确孔结构的单分子厚的碳纳米膜(CNM)。[14]我们最近报道了分子通过 Au(111) 表面由三联苯硫醇 (TPT) 单层制备的约 1.2 纳米厚的 CNM 进行传输。 [15] 单层纳米薄膜在低能电子作用下会断裂 TPT 前驱体中的 C H 键,将高度有序的分子结构转化为坚固的可转移交联碳网络(图 1a)。这些纳米膜可允许极高的水流量,同时几乎不渗透非极性分子和原子。这归因于亚纳米通道的高面密度(≈ 10 18 m − 2 ,即每平方纳米 1 个亚纳米孔),极性水分子可以通过这些通道以单行传输。[15,16] 因此,通道密度远远超过其他纳米结构膜达到的≈ 10 14 –10 16 m − 2 。[5,10,17] 因此,这些膜代表了一种潜在的新型 2D 膜,可用于实现高性能
目前,DTI 预测的计算方法可以分为三类:基于配体的方法、对接方法和特征学习方法。基于配体的方法通常用于通过计算给定药物或化合物与已知靶标的活性化合物的化学结构相似性来估计潜在的作用靶标。Keiser 等人 [3] 提出了一种根据配体的化学相似性推断蛋白质靶标的方法。Yamanishi 等人 [7-9] 通过将化合物的化学结构相似性和蛋白质的氨基酸序列相似性整合到均匀空间来预测未知的药物-靶标相互作用。Campillos 等人 [9] 将化合物的化学结构相似性和蛋白质的氨基酸序列相似性整合到均匀空间中。 [6]通过表型副作用的相似性来预测潜在的靶标蛋白。这种基于配体的方法在化学结构相似性较高的情况下简单有效,但也在很大程度上限制了其应用的范围和准确性。对接方法是计算药物与潜在靶标在三维结构中的形状和电性匹配程度,从而推断药物可能的作用靶点。其中,反向对接方法是最常用的预测方法,该方法通过预测给定化合物与靶标之间的相互作用模式和亲和力对药物靶标进行排序,从而确定该药物的可能靶点。程等[10]开发了基于结构的最大亲和力模型。李等[11]开发了利用对接方法识别药物靶点的网络服务器Tar-FisDock。此类方法充分考虑了目标蛋白质的三维结构信息,但分子对接方法本身仍存在一些尚未得到有效解决的问题,如蛋白质的灵活性、打分函数的准确性以及溶剂水分子等,导致逆对接,该方法的预测准确率较低。对接的另一个严重问题是它不能应用于三维结构未知的蛋白质,到目前为止,已知三维结构的蛋白质仍只占所有蛋白质的一小部分,这严重限制了该方法的推广和普及。特征学习方法将药物靶标关系视为相互作用和非相互作用的二类问题,此类方法利用机器学习算法学习已知化合物-靶标对的潜在模式,通过迭代优化生成预测模型,进而推断潜在的DTI。Yu等[12]提出了一种基于化学、基因组和药理学信息的系统方法。Faulon等[13]提出了一种基于化学、基因组和药理学信息的系统方法。[ 13 ] 预测药物
在临床前动物模型中,研究人员可以在同一薄层组织中探测神经元内的活动[例如立即早期基因蛋白产物(Mcreynolds 等人,2018 年;Aparicio 等人,2022 年)],检查神经元的投射和/或突触支配[例如管道或病毒追踪(Card and Enquist,1999 年;Saleeba 等人,2019 年)],并确定神经化学表型[例如免疫组织化学(Magaki 等人,2019 年)]。通过临床前方法可以实现很高的机制特异性。在了解人脑方面,神经影像学为研究人员提供了非侵入性地探测大脑结构、功能和连接的机会,但它也并非没有局限性。例如,功能性磁共振成像 (fMRI) 中的血氧水平依赖性 (BOLD) 信号是基于氧合血红蛋白取代脱氧血红蛋白的神经激活的代理,而其本身并不是神经活动 (Huettel 等人,2009 年)。此外,扩散加权成像 (DWI) 和衍生的纤维束成像根据受神经成分限制的水分子扩散来推断白质结构,并不代表特定的神经元靶点或突触支配。因此,已知的临床前模型中的神经解剖学和功能文献极大地增强了对神经影像学发现的解释,努力在这些方法之间找到趋同非常重要 (例如,Folloni 等人,2019 年;Haber 等人,2021 年)。类似地,临床前模型或死后人脑的解剖技术(例如钝性和/或纤维解剖)与神经影像学(例如纤维束成像)之间的共识也很重要(Wu 等人,2016 年;Oler 等人,2017 年;Pascalau 等人,2018 年)。尽管神经影像学存在局限性,但仍有很大潜力利用不同的神经影像学模式的优势并整合这些模式,以更广泛地了解神经动力学,并对无数发育、情感、认知和临床问题有更深入的机制理解。不同的神经影像学模式可能揭示与早期经验不同维度的关系,从而为神经发育提供见解。例如,扩散光谱成像揭示了童年威胁(即虐待和创伤事件)与剥夺(即社会经济)对终纹白质的对立关系(Banihashemi 等人,2021b)。此外,静息态功能连接揭示了创伤事件与中枢内脏网络连接之间的关系(Banihashemi 等人,2022),而应激源诱发的活动揭示了
1-博士论文项目1.1 - 在城市环境中使用农药的情况和科学问题越来越受控,越来越多地使用杀菌物质,尤其是作为杀菌剂,藻类药物,藻类药物,脱氧剂或杀虫剂在建筑材料中以及pest pest Control(Anses,2019; Paijens,2019; Paijens等,2020202020年)。这些杀菌剂是从建筑物的径流中散发出来的,被排放到地面或进入雨水管理系统并到达环境,并可能对水生生态系统产生负面影响(Kresmann等人(Kresmann等)2018; Paijens等。2020a)。但是,这些杀菌剂的城市排放及其对接收环境的影响的记录很少。claudia paijens(2019)在列苏(Leesu)的论文工作(i)表明,生物剂在城市水域中无处不在,对水生环境构成风险,(ii)在巴黎综合的上游和下游之间的生物剂流动增加了几个分子和(III III)的可能性(可能是III),这可能是(IIII III)的影响。从建筑材料(Paijens等,2020b,2021)。Although biocide emissions from construction materials have been extensively studied in the laboratory or on the scale of test benches (Bollmann et al., 2016; Burkhardt al., 2011; Gromaire et al, 2015), few studies have quantified emissions at the scale of an urban neighbourhood and addressed the link between urban emissions of biocides, their fate in the stormwater management system and their transfer to the surface or underground水生环境(Burkhardt等,2011;Gallé等,2020; Paijens等,2020a)。在促进现场渗透的城市径流中控制雨水的措施的制定引起了人们对浸润系统土壤中杀害剂的命运及其潜在运输到地下水的担忧。作为主要的亲水分子,土壤不应强烈保留杀菌剂,这与通常在径流中所研究的微污染物(例如金属和多环芳族烃)不同(Tedoldi等,2016)。此外,杀菌剂可以演变成转换产物(TPS),这些产品记录不足,代表了接收环境暴露的未知风险。在基于自然的解决方案(NBS)中,非常漫射的径流管理可以允许临时保留和生物降解生物剂,但迄今为止尚未评估这些过程的真正重要性。在这种情况下,我们已经确定了本文提案的几个目标:(i)评估在巴黎地区城市环境中从建筑外墙散发出杀害剂的潜力; (ii)评估土壤污染水平和土壤中杀菌剂的命运; (iii)评估建筑物综合体规模上不同径流管理策略对杀菌剂向环境转移的影响(见图1)。