拟议行动的目的是防止米尼多卡大坝泄洪道和运河首部工程(拟议行动区域)发生结构性损坏。经过 103 年的持续使用,2,237 英尺长的混凝土泄洪道已达到其使用寿命的终点。构成泄洪道顶和挡水结构墩的混凝土在许多位置遭受了严重损坏。此外,之前冰对泄洪道溢流段造成的损害要求每年冬天降低水库水位。北侧运河和南侧运河的首部工程也显示出与泄洪道状况类似的严重混凝土损坏。米尼多卡大坝泄洪道和首部工程的当前状况带来了越来越困难的可靠性和维护问题。垦务局必须能够继续履行其根据《内兹珀斯和解协议》和《濒危物种法案》(ESA)规定的供水、发电和提供流量增强水的承诺的合同义务。泄洪道或运河首部工程的部分或全部故障可能会威胁到垦务局履行这些义务的能力。
摘要:Quarry Battery Company Ltd. 已聘请 Fichtner GmbH & Co KG 和 Fichtner Consulting Engineers Ltd. 支持其在威尔士的 100 MW 抽水蓄能水电开发项目。该计划预计通过水道连接两个废弃的板岩采石场,每个采石场的深度约为 50 m,储水量约为 110 万立方米,并连接一个配备变速水泵涡轮机的发电站,发电站的装机发电量和抽水量分别为 100 MW 和 120 MW,总水头在 186 至 292 m 之间。采石场将进行整形和密封,以实现稳定性和防水性。为了扩大储水量,在采石场边缘的下部设计了带有表面密封的堆石坝。本文将讨论大坝和采石场的密封元素的设计,包括连接和接口。对于采石场,密封要求是根据岩土工程调查来评估的。该项目已获得同意,在承包商和供应商的早期参与后,FEED 设计已更新。
曝气池在增强溶解的氧气水平方面起着至关重要的作用,这为7月份的磷去除和11月的氮去除提供了最佳条件。在曝气池和生物过滤器池塘内,附生细菌α多样性明显高于其他治疗池,这表明这些区域提供了有利于细菌定植和活性的富集微环境。
向低碳电力系统的过渡需要具有成本效益的能源存储解决方案。本研究首次对大陆规模的微型抽水蓄能进行了评估,并建议使用农业水库(农场水坝)来大幅降低建设成本。澳大利亚大陆是国际上其他干旱和温带地区的代表性案例研究。通过对澳大利亚 170 万座农场水坝的新调查,我们确定了 30,295 个有前景的抽水蓄能站点,这些站点的水坝与水坝和水坝与河流水库的配置方式相同。平均每个站点附近的水库(132 米)水头高度较高(32 米),排水量较大(52 千瓦时)。然后,我们将代表性的微型抽水蓄能站点与商用锂离子电池进行了对比,以用于太阳能灌溉系统。尽管抽水蓄能的放电效率较低(68%),但由于其存储容量高,对于较大的单周期负荷(约 41 千瓦时/天),其成本降低了 30%(0.215 美元/千瓦时)。通过利用现有的农场水坝,微型抽水蓄能可能支持农业社区采用可靠的低碳电力系统。
大型水坝的建设引发了人们强烈的热情。支持者认为,水坝可以避免灾难性的洪水和干旱造成的损失,改善航运,并为灌溉计划提供水力发电和可控的水源。批评者认为,水坝会破坏生态系统和土著文化,导致河流自由流动,成本超支(Ansar 等人,2014 年)。不同学科的人士在这场辩论中站在不同的立场上。工程师通常关注效益,而生态学家、社会学家和人类学家则关注成本。几十年来,经济学家一直试图找到一种合理的方法来衡量大型水坝的效益和成本,以弥合支持者和批评者之间的分歧。正如本文所述,经济学家的这一努力既复杂又具有挑战性,而且只取得了有限的成功。当然,使用成本效益分析来评估水坝项目并不是经济分析第一次卷入涉及大型复杂水利项目的激烈辩论之中。正如 Banzhaf (2009) 所记录的,成本效益分析的起源可以追溯到关于如何为多目标水利工程相关的政策决策提供信息的争论。这段历史有助于当今的读者了解成本效益分析工具是如何演变的,以及它们所认为的缺点是如何激发新研究的。我们认为,从与建造大型新水坝相关的决策分析中吸取的教训对于评估当前关于拆除水坝(大型和小型)的决策以及一般的大型水利工程同样重要。
泰伯水坝 2993.0 3012.5 918,394 1,323,068 2979.79 -0.03 706,524 128 406 76.9 0 0.0 克拉克峡谷水坝 5546.1 5560.4 174,300 251,435 5535.46 0.06 123,986 179 50 71.1 0 0.0 峡谷渡口水坝 3797.0 3800.0 1,886,950 1,993,036 3784.33 -0.03 1,474,864 3,162 3,162 78.2 0 0.0 博伊森水坝 4725.0 4732.2 741,594 892,226 4713.02 -0.05 535,851 552 701 72.3 0 0.0 布法罗比尔水坝* 5393.5 -- 646,565 -- 5355.95 -0.05 373,965 7 198 57.8 -- -- 黄尾鱼水坝 3640.0 3657.0 1,011,052 1,263,682 3627.68 -0.13 875,586 1,492 2,105 86.6 0 0.0 詹姆斯敦水坝 1431.0 1454.0 30,488 220,990 1429.18 0.01 26,523 23 13 87.0 0 0.0 Heart Butte 大坝 2064.5 2094.5 67,142 214,169 2060.47 -0.03 54,550 -47 10 81.2 0 0.0 Keyhole 大坝 4099.3 4111.5 188,671 329,134 4089.48 -0.01 112,468 0 0 59.6 0 0.0 Pactola 大坝 4580.2 4621.5 55,975 99,038 4569.28 -0.05 47,186 9 32 84.3 0 0.0 Shadehill 大坝2272.0 2302.0 120,172 350,176 2262.69 0.00 79,335 19 19 66.0 0 0.0 Glendo 大坝 4635.0 4653.0 492,022 763,039 MMMMMMMM 军团支流项目
近年来,日本各地每年都会因台风和线状雨带引发的暴雨而发生洪涝灾害,社会对作为江河防洪功能的水坝运行的担忧十分强烈。特别是在2018年7月暴雨之后,日本内阁府率先推动与水利水坝管理者签订防洪协议,不仅要求传统的防洪水坝具备防洪功能,而且要求水利水坝也具备防洪功能。另一方面,由于日本政府宣布到2050年实现净碳中和,强调水力发电作为发电过程中不产生CO 2 排放的清洁能源的重要性,所有电力公司现在都在努力增加水力发电量。在这种情况下,大坝的运行比过去更加复杂,这也往往会增加大坝管理人员的工作量。由于未来人口增长前景不明朗