极化储存环和 FEL 通常具有水平极化矢量,这通常需要在垂直平面上散射。LCLS-II 硬 X 射线波荡器具有垂直极化矢量。圆极化对于磁测量来说是可能的,并且很重要。
图 1. 代表在 (a) 黑暗条件下使用 (b) 垂直极化和 (c) 水平极化、λ avg = 528 nm 照明生成的薄膜的 SEM。 (d) 透视 AFM 代表使用两个正交极化 λ avg = 528 nm 照明输入(总强度的 0.7 部分在一个极化中提供,其余部分在正交极化中)通过单个步骤由无机向光性生长生成的薄膜。
1. 需要一个具有良好特征的量子比特的可扩展物理系统。量子比特只是一个量子两能级系统,就像自旋为 1/2 粒子的两个自旋态,原子的基态和激发态,或单个光子的垂直和水平极化。量子比特状态的通用符号将一个状态表示为 | 0 ⟩,将另一个状态表示为 | 1 ⟩ 。量子比特与比特之间的本质区别是,根据量子力学定律,单个量子比特的允许状态填满一个二维复向量空间;一般状态写为 a | 0 ⟩ + b | 1 ⟩ ,其中 a 和 b 为复数,通常采用规范化约定 | a | 2 + | b | 2 = 1 。两个量子比特的一般状态 a | 00 ⟩ + b | 01 ⟩ + c | 10 ⟩ + d | 11 ⟩ 是一个四维向量,两个系统的每个可区分状态对应一个维度。这些状态一般是纠缠的,这意味着它们不能写成两个单独量子比特状态的乘积。n 个量子比特的一般状态由 2 n 维复向量指定
与森林砍伐、碳循环、酸沉降和污染有关的重要问题。此外,全球植物信息在经济方面也很有用,例如调查粮食和纤维资源状况。许多研究人员已经研究了光学数据的信息内容,重点研究了 Landsat 传感器 [即多光谱扫描仪 (MSS) 和专题制图仪 (TM)]。遥感和植物学文献中充满了关于 MSS 和 TM 图像数据的潜在或实际用途的论文(请参阅 Colwell (1983) 的摘要)。其他研究人员已经探索了主动微波数据的信息内容(请参阅 Ulaby 等人 (1983) 的摘要)。很少有研究人员将光学和主动微波数据结合起来用于植被特征描述(Wu,1981)。在本文中,我们介绍了对加利福尼亚州某地区航天器拍摄的光学和有源微波图像数据进行综合研究的结果,该地区的草本植物和木本植被种类繁多。 1984 年 10 月,美国国家航空航天局 (NASA) 进行了第二次航天飞机成像雷达 (SIR) 任务。第一次任务 (SIR-A) 于 1981 年 11 月完成。它是一台合成孔径雷达 (SAR),工作在 L 波段,波长为 23.5 厘米,微波发射和接收均为水平极化(即 HH 极化组合)。SIR-A 以入射角观察地球表面
图 1-1:物联网示意图 ................................................ . ................................................. ...................7 图 1-2:不同类型的条形码;一维或线性、堆叠线性和二维 [3]。................................................ . ................................................. ................................................. .....7 图 1-3:安全元件(智能卡、护照、重要卡)市场的全球预测(2010 年至 2018 年售出数百万件) – Eurosmart [4] .... ... ……………………………… ................................8 图 1-4:2017 年非接触式市场:销量(单位:百万台)[4] ……………………………… ......9 图1-5:战争期间利用反向散射原理与雷达操作员进行通信 [7]。................................................ . ................................................... 31 图 1-26:带有外力传感器进行跟踪的 RFID 标签食品 [25] ................................... 33 图 1-27:a) 使用基于石墨烯的外部功能化区域的 RFID 传感器b) 电阻随相对湿度变化而变化的结果 [22] ................................................... 33 图 1-28:通信 RFID 传感器系列模拟................................................ ................. 35 图 1-29:具有阈值检测功能的生物 RFID 传感器:a) RFID 传感器剖面图,b) 俯视图,c) 不可逆石蜡基底的影响:芯片最小激活功率随温度变化的变化[61]。................................................ . ................................................. ...................................................... 39 图1 -30:示例取自带有敏感天线的 RFID 传感器文献,左侧:完全由石墨烯制成的天线 [47],右侧:由石墨烯精细部件组成的天线 [72]。...................................... 41 图 1-31:取自[76]的结果:a) 900 MHz 下蒸馏水的电特性 b ) RFID 传感器的最小激活功率,针对不同气温进行测量和平均。...................................... 43 图 1-32:结果取自[48]:a) 示意图由 Pt_rGO 实现功能化的射频识别 (RFID) 传感器标签。b) 柔性 RFID 传感器的照片。c) RFID 传感器的测量结果作为氢浓度的函数。................................................ . 43 图 2-1:无源 UHF RFID 传感器的天线功能化检测策略 ................................. ....... 56 图 2-2:无源 UHF RFID 标签的等效电路 [1] ........................................ ................................................ 57 图 2 -3: 辐射图偶极子与各向同性偶极子的比较 [5] ................................................ 59 图 2-4:极化电磁波的特征,a) 垂直极化,b) 水平极化和 c) 圆极化 [6] ........................................ . ................................................. ................................................. ....... 60 图 2-5:RFID 阅读器和标签之间的读取距离示意图 ................................ ................................................. 60 图 2-6:材料与电阻率的关系 [8] .... ................................................... ................................................... 62 图 2-7:法拉第实验:电枢电容器 [10] ................................ 62 图 2-8:电容器上电场感应的偶极矩原子 [10] ................................................ . .... 63 图 2-9:极化现象示意图 [10] ................................................ .. ................................... 64 图 2-10:复介电常数随频率的变化 [14] ................................................... 66 图2-11:实部和虚部复介电常数的计算....................................................... ................................. 66 图 2-12:介电常数和损耗对天线反射系数的影响....................... 67 图 2-13:小麦面筋的复介电常数与相对湿度 (RH) 的函数关系,频率为 868 MHz,温度为 25°C [13]。................................................ . ................................................. ................................................. ...................................... 68 图 2-14:拟议传感器天线的组成示意图。................................................ . ............ 69 图 2-15:用不同的方法对球体进行网格划分: (a) 球体的几何形状;使用 (b) 四面体 (FEM)、(c) 正交单元 (FDTD) 和 (d) 三角形 (MoM)[21]。...................................... 70