• Ackers 和 White (1973) • Engelund-Hansen (1967) • Lausen-Copeland (1989) • Meyer-Peter-Muller (1948) • Soulsby-van Rijn (1997) • Toffaleti (1968) • Van Rijn (1984ab, 2007ab) • Wilcock 和 Crowe (2003) • Wu 等 (2000) • Yang (1984)
沉积物输送接口模块由 Stanford A. Gibson 先生编写。准非稳定流计算沉积物输送功能由 Stanford A. Gibson 和 Steven S. Piper 开发。非稳定流沉积物输送模块由 Stanford A. Gibson、Steven S. Piper 和 Ben Chacon (RMA) 开发。特别感谢 Tony Thomas 先生(HEC-6 和 HEC-6T 的作者)协助开发 HEC-RAS 中使用的准非稳定流沉积物输送程序。二维沉积物输送模块由 Alex Sanchez 和 Stanford Gibson 开发。HEC-RAS(1D 和 2D)中的泥石流功能由 Stanford Gibson 和 Alex Sanchez 开发。大部分沉积物输出由 Stanford Gibson 和 Alex Sanchez 设计,并由 Anton Rotter-Sieren 编程。
经验 2023 年 12 月 – 至今:美国陆军工程兵团水文工程中心水文与统计部主任,加利福尼亚州戴维斯。 2017 年 2 月 – 2023 年 12 月:土木工程师(水利);美国陆军工程兵团水文工程中心,加利福尼亚州戴维斯;水文与统计部。统计方法、水文气象学和水文建模。HEC-HMS 团队负责人。 2022 年 10 月 – 2023 年 12 月:美国陆军工程兵团水文工程中心水文与统计部主任,加利福尼亚州戴维斯(发展任务)。
缩略语 AHPS 高级水文预报服务 CNMS 协调需求管理战略 CSC 沿海服务中心 CTP 合作技术伙伴 DEM 数字高程模型 FEMA 联邦应急管理局 FGDC 联邦地理数据委员会 FIM 洪水淹没测绘 FIRM 洪水保险费率图 FIS 洪水保险研究 GCS 地理坐标系统 GIS 地理信息系统 H&H 水文和水力学 HEC-HMS 水文工程中心水文建模系统 HEC-RAS 水文工程中心河流分析系统 HUC 水文单位代码 HWM 高水位线 LiDAR 光检测和测距 NAD 北美基准 NADCON 北美基准转换 NAVD 北美垂直基准 NFIP 国家洪水保险计划 NGS 国家大地测量局 NOAA 国家海洋和大气管理局
缩略词 AHPS 高级水文预报服务 CNMS 协调需求管理战略 CSC 海岸服务中心 CTP 合作技术伙伴 DEM 数字高程模型 FEMA 联邦应急管理局 FGDC 联邦地理数据委员会 FIM 洪水淹没制图 FIRM 洪水保险费率图 FIS 洪水保险研究 GCS 地理坐标系统 GIS 地理信息系统 H&H 水文和水力学 HEC-HMS 水文工程中心水文建模系统 HEC-RAS 水文工程中心河流分析系统 HUC 水文单位代码 HWM 高水位线 LiDAR 光检测和测距 NAD 北美基准 NADCON 北美基准转换 NAVD 北美垂直基准 NFIP 国家洪水保险计划 NGS 国家大地测量局 NOAA 国家海洋和大气管理局
背景与目标:精细地形信息是详细洪水模拟和制图的关键输入参数。本研究旨在比较使用光检测和测距以及干涉合成孔径雷达系统的不同分辨率数字高程数据集开发的洪水模型的精度统计数据。方法:本研究应用地理信息系统中可用的水文工程中心-水文建模系统和水文工程中心-河流分析系统模型来模拟和绘制 Maapag 流域的洪水灾害。使用混淆误差矩阵、f 测量值和均方根误差统计数据测试了模型的有效性和精度。结果:结果表明,使用光检测和测距数据集,模型的精度为 88%、0.61 和 0.41;而使用干涉合成孔径雷达数据集,模型的精度分别为 76%、f 测量值和均方根误差。结论:使用光探测和测距数据集开发的模型比使用干涉合成孔径雷达开发的模型精度更高。然而,考虑到模型实施成本和较小的精度残差,后者可以作为前者的替代方案用于洪水模拟和测绘。因此,洪水建模者,特别是来自地方当局的洪水建模者更喜欢使用较粗的数据集来优化洪水模拟和测绘工作的预算。
背景与目标:精细地形信息是详细洪水模拟和制图的关键输入参数。本研究旨在比较使用光检测和测距以及干涉合成孔径雷达系统的不同分辨率数字高程数据集开发的洪水模型的精度统计数据。方法:本研究应用地理信息系统中可用的水文工程中心-水文建模系统和水文工程中心-河流分析系统模型来模拟和绘制 Maapag 流域的洪水灾害。使用混淆误差矩阵、f 测量值和均方根误差统计数据测试了模型的有效性和精度。结果:结果表明,使用光检测和测距数据集,模型的精度为 88%、0.61 和 0.41;而使用干涉合成孔径雷达数据集,模型的精度分别为 76%、f 测量值和均方根误差。结论:使用光探测和测距数据集开发的模型比使用干涉合成孔径雷达开发的模型精度更高。然而,考虑到模型实施成本和较小的精度残差,后者可以作为前者的替代方案用于洪水模拟和测绘。因此,洪水建模者,特别是来自地方当局的洪水建模者更喜欢使用更粗略的数据集来优化洪水模拟和测绘工作的预算。
背景与目标:精细地形信息是详细洪水模拟和制图的关键输入参数。本研究旨在比较使用光检测和测距以及干涉合成孔径雷达系统的不同分辨率数字高程数据集开发的洪水模型的精度统计数据。方法:本研究应用地理信息系统中可用的水文工程中心-水文建模系统和水文工程中心-河流分析系统模型来模拟和绘制 Maapag 流域的洪水灾害。使用混淆误差矩阵、f 测量值和均方根误差统计数据测试了模型的有效性和精度。结果:结果表明,使用光检测和测距数据集,模型的精度为 88%、0.61 和 0.41;而使用干涉合成孔径雷达数据集,模型的精度分别为 76%、f 测量值和均方根误差。结论:使用光探测和测距数据集开发的模型比使用干涉合成孔径雷达开发的模型精度更高。然而,考虑到模型实施成本和较小的精度残差,后者可以作为前者的替代方案用于洪水模拟和测绘。因此,洪水建模者,特别是来自地方当局的洪水建模者更喜欢使用较粗的数据集来优化洪水模拟和测绘工作的预算。
背景与目标:精细地形信息是详细洪水模拟和制图的关键输入参数。本研究旨在比较使用光检测和测距以及干涉合成孔径雷达系统的不同分辨率数字高程数据集开发的洪水模型的精度统计数据。方法:本研究应用地理信息系统中可用的水文工程中心-水文建模系统和水文工程中心-河流分析系统模型来模拟和绘制 Maapag 流域的洪水灾害。使用混淆误差矩阵、f 测量值和均方根误差统计数据测试了模型的有效性和精度。结果:结果表明,使用光检测和测距数据集,模型的精度为 88%、0.61 和 0.41;而使用干涉合成孔径雷达数据集,模型的精度分别为 76%、f 测量值和均方根误差。结论:使用光探测和测距数据集开发的模型比使用干涉合成孔径雷达开发的模型精度更高。然而,考虑到模型实施成本和较小的精度残差,后者可以作为前者的替代方案用于洪水模拟和测绘。因此,洪水建模者,特别是来自地方当局的洪水建模者更喜欢使用较粗的数据集来优化洪水模拟和测绘工作的预算。
背景和目标:精细地形信息是详细洪水模拟和制图的关键输入参数。本研究旨在比较使用不同分辨率的数字高程数据集开发的洪水模型的精度统计数据,这些模型来自光检测和测距以及干涉合成孔径雷达系统。方法:本研究应用地理信息系统中可用的水文工程中心-水文建模系统和水文工程中心-河流分析系统模型来模拟和绘制 Maapag 流域的洪水灾害。使用混淆误差矩阵、f 测量和均方根误差统计测试了模型的有效性和准确性。发现:结果表明,使用光检测和测距数据集,该模型的准确率分别为 88%、0.61 和 0.41;而使用干涉合成孔径雷达数据集,该模型的误差矩阵、f 测量和均方根误差的准确度分别为 76%、0.34、0.53。结论:使用光检测和测距数据集开发的模型比使用干涉合成孔径雷达开发的模型具有更高的准确度。尽管如此,考虑到模型实施成本和较小的精度残差误差,后者可以作为前者的替代方案用于洪水模拟和测绘。因此,洪水建模者,特别是来自地方当局的洪水建模者更喜欢使用更粗的数据集来优化洪水模拟和测绘工作的预算。