摘要:在氢产生中,阳极氧的演化反应(OER)限制了能量转化的效率,并且还会影响质子交流膜水电氧化质量的稳定性。广泛使用的基于IR的催化剂从不良活性中产生,而基于RU的催化剂则倾向于在OER条件下溶解。这与晶格氧(晶格氧氧化机制(LOM))的参与有关,这可能导致晶体结构的崩溃并加速活性RU物种的浸出,从而导致工作稳定性较低。在这里,我们开发了Sr -ru -ir三元氧化物电催化剂,可在酸性电解质中获得高活性和稳定性。催化剂在10 mA cm -2时达到了190 mV的超电势,并且在运行1,500小时后,超电势保持在225 mV以下。X射线吸收光谱和18 O同位素标记的在线质谱研究表明,OER期间晶格氧的参与受到Ru-O- ir局部结构的相互作用的抑制,这是如何改善稳定性的情况。通过SR和IR调节活性RU位点的电子结构,以优化OER氧中间体的结合能。■简介
缺乏用于非水电的膜的膜,会限制有机氧化还原流细胞中的细胞容量和循环寿命。使用可溶性,稳定的材料,我们试图比较可使用市售的微孔分离器和离子选择性膜可以实现的最佳性能。我们使用具有证明稳定性的有机物种,以避免由于材料降解而导致的分频和/或细胞失衡而导致的反应能力褪色。我们发现了生命周期和库仑效率之间的权衡:非选择性的分离器的性能更稳定,但具有低库仑效率,而离子选择性膜的效率低,而离子选择性膜可实现高库仑的效率,但会随着时间的推移而经历能力损失。当骑自行车前混合电解质时,库仑效率仍然很高,但是由于细胞不平衡而导致的容量损失,可以通过电解质重新平衡来恢复。这项研究的结果强调了可以通过合适的膜可以实现的非水细胞性能增益的潜力。
电化学 (EC) 和光电化学 (PEC) 水分解代表了可再生能源转换和燃料生产的有前途的策略,并且需要设计用于氧析出反应 (OER) 的高效催化剂。在此,我们报告了二维 (2D) 钴基金属有机骨架 (Co-MOF) 纳米片的合成及其对 EC 和 PEC OER 的双功能催化性能。得益于大的表面积和丰富的孤立金属活性位点,Co-MOF 纳米片表现出优异的 OER 活性和稳定性。由于尺寸限制,纳米片高效的电子-空穴产生和分离有助于改善 PEC OER 中的可见光响应。这项研究提出了一种利用 2D MOF 独特的结构和电子特征来设计 EC/PEC 双功能催化剂的新策略。
中性电解质中的OER首先发生在催化剂活性位点上吸附水分子(即反应物),然后形成反应中间体(如HO*、O*和HOO*),最后产生和释放O 2 。[14,15]因此,额外的水吸附及其解离过程是中性OER催化所必需的。调整催化剂的电子结构和增加反应物在催化剂表面的吸附以利于中性OER反应途径将是提高中性OER速率的途径。最近的研究表明,加入额外的过渡金属可以通过改变贵金属催化剂的电子结构来提高其本征活性。 [16] 此外,研究发现,在涉及水的反应中,水合金属阳离子(Mn +)与 HO* 相互作用可以生成 OH 和 -Mn + (H 2 O) x 物种,进一步增加水分子在催化剂/电解质界面的吸附。[17,18] Ca 2 +作为典型的水合金属阳离子,具有较高的水合能,可以增加水分子在催化剂表面的吸附。[19–21] 我们认为将 Ca 2 +引入 Ru-Ir 二元氧化物中可以获得最佳电子结构,从而增强活性位点的本征活性,同时增加吸附态 Pd 的局部浓度。