摘要:锌离子电池(ZIBS)在储能应用中表现出令人难以置信的潜力作为锂离子电池(LIB)的替代潜力。Zibs具有多个优势,例如安全性,环境友善,低成本和自然丰度,这可能是LIBS的潜在替代品。此迷你审查总结了水溶液(Azibs)的基础知识。简要讨论了当前的Zibs市场,并预计将在不久的将来最大化Azibs的收益。此外,基于Azibs的成分(例如阴极,阳极和电解质材料)提出了Zibs的新化学。尽管Azibs具有优势,但它们仍然面临一些挑战,例如找到具有更好的结构稳定性和出色的电化学性能的合适的阴极材料。最后,总结了挑战和可能的未来前景。
摘要。这项工作旨在合成和表征橙皮(OP)易于回收的磁复合材料(Orange Peel复合[OPC]),并将其用作e efff fromedscorembent,以从批处理模式下从水性溶液中清除工业药物(diclofenac(dfc))。OP和OPC通过各种技术进行表征,包括傅立叶变换红外,扫描电流显微镜与能量分散光谱,X射线di ff raction,Brunauer-Emmett – Emmett – Emmett – Emmett – Emmett – Emmett-thermogravimetric分析表明,OPC具有有趣的物理学物质性质,可与许多其他许多其他相比。发现OPC的DFC去除是时间依赖性的,并且在90分钟后获得平衡状态。此外,在30°C的温度下,该磁性材料的DFC吸附能力估计为37.0 mg·g -1,高于各种吸附剂。此外,热力学研究结果表明,DFC的去除是可行的,放射的和自发的过程。所有这些结果证明,在广泛的实验条件下,可以将磁化的OP废物视为从水溶液中除去DFC的有前途的材料。
他们。 N. I. Lobachevsky,俄罗斯 nikolai.zolotykh@itmm.unn.ru 简介。在供水和排水系统中,通过“水资源质量”渠道[1]实时实施应急风险应对几乎是不可能的,特别是在发生污染物齐聚排放的情况下[2, 3]。在分析技术现状的基础上,建立了水资源测量装置、净化设计和技术方法与水质指标之间的相互关系矩阵[1]。评估表明,能够实时操作的测量设备的范围不足约 71% [3]。据此可以制定出确保水溶液处理效率、饮用水和废水净化以及对人口造成风险、人为环境负荷和使环境安全管理复杂化的因素的问题领域:发生自然和人为不可预测的紧急情况的可能性;缺乏关于具体组合水处理工艺的完整信息(每个设施都有自己的特点和设备设置参数,以实现高效运行);过程特性的多因素性质;缺乏水溶液质量指标的测量设备或现代技术解决方案的准确性和速度低。上述在处理设施的创建和运行中使用的方法的缺点对于生物减水方法尤其重要,因为除了技术单元之外,还需要考虑这种生物技术系统的生物成分——活性污泥(AS)[4]。因此,建立生物废水处理设施环境安全分析预测智能系统(ISAP EP BSOV)是有前景的。 ISAP EP BSOV 功能的技术方面。 PND F SB 14.1.92-96 规定了系统化在废水处理中发挥关键作用的丝状微生物的方法。同时,活性污泥生物群落的评估方法相当耗费人力,因此,对于快速评估,建议使用简化的专家评估方案作为管理过程质量的总体标准,其特点如表1所示。生物处理设施(BTP)流程决策支持系统(DSS)的信息流结构如图1所示。
图3。水溶液中珠与DNA比对碎片恢复的影响。 为了确定不同的珠与DNA比对DNA片段尺寸选择的影响,将DNA尺寸梯子稀释至总体积为50 µL,并与各种体积的QIASEQ珠子从25 µL(0.5倍)到75 µL(1.5x)孵育。 在室温下DNA结合5分钟后,将管子放在磁性台上,再将溶液清除为止。 接下来,将上清液丢弃,并用200 µl 80%乙醇洗涤两次珠子。 在最终的乙醇洗涤后,除去上清液并将磁珠完全干燥。 将沉淀在6 µL缓冲液EB中洗脱。 在Agilent生物分析仪高灵敏度芯片上分析了等分试样(1 µL)以及未覆盖的尺寸梯子(参考阶梯)。 (a)片段定量。 (b)片段分布的百分比与参考相比。水溶液中珠与DNA比对碎片恢复的影响。为了确定不同的珠与DNA比对DNA片段尺寸选择的影响,将DNA尺寸梯子稀释至总体积为50 µL,并与各种体积的QIASEQ珠子从25 µL(0.5倍)到75 µL(1.5x)孵育。在室温下DNA结合5分钟后,将管子放在磁性台上,再将溶液清除为止。接下来,将上清液丢弃,并用200 µl 80%乙醇洗涤两次珠子。在最终的乙醇洗涤后,除去上清液并将磁珠完全干燥。将沉淀在6 µL缓冲液EB中洗脱。在Agilent生物分析仪高灵敏度芯片上分析了等分试样(1 µL)以及未覆盖的尺寸梯子(参考阶梯)。(a)片段定量。(b)片段分布的百分比与参考相比。
性质 值 备注 • 方法 熔点 / 凝固点 无数据 未知 沸点 / 沸程 (°C) 无数据 未知 可燃性 (固体、气体) 无数据 未知 空气中的可燃性极限 未知 可燃性上限: 无数据 可燃性下限: 无数据 闪点 无数据 开杯 自燃温度 无数据 未知 分解温度 未知 pH 无数据 未知 pH (水溶液) 无数据 无信息 运动粘度 无数据 未知 动态粘度 无数据 未知 水溶性 无数据 未知 在其他溶剂中的溶解度 无数据 未知 分配系数 无数据 未知 蒸气压 无数据 未知 相对密度 无数据 未知 堆积密度 无数据 液体密度 无数据 蒸气密度 无数据 未知 颗粒特性 颗粒大小 无信息 颗粒大小分布 无信息
抽象具有低热电阻和高温电导的热管是最有效的传热装置之一。它可以在小的横截面区域上移动大量热量,而两个温度限制之间的温度变化极少。这项研究使用专家软件的设计来评估各种纳米流体的性能作为热管的工作流体,包括氧化铜,氧化石墨烯,氧化铁和氧化钛。该分析中使用的基础流体是N-辛醇的水溶液。此分析中考虑的参数是冷凝器流量,填充比,倾斜角和热输入。为了评估热管工作流体的热效率,使用中央复合设计(CCD)矩阵和响应表面方法在实验设计过程中评估所有操作因素。实验发现表明,建议的模型可以将热管的热效率预测到变化的1%以内。结果,建议的模型可用于预测热管的热效率。
研究化学的基本原理,重点是原子理论和结构、化学键、周期性趋势、热化学、核化学、水溶液、化学计量学和物质的气态。为了满足实验室科学的要求,学生应参加相关的实验室课程。讲座:4 小时先决条件:CHEM-1010 无机化学简介,或化学评估测试的足够分数;MATH-0965 中级代数* 或合格的数学分班;或部门批准:同等知识或技能。注意:2013 年秋季之前参加的 MATH-1200 或 2016 年秋季之前参加的 MATH-1270 或 MATH-1280 也将被接受以满足先决条件要求。 OAN 批准:俄亥俄州转学 36 TMNS 和转学保证指南 OSC008(2 门课程中的第 1 门,必须全部修完)和 OSC023(4 门课程中的第 1 门,必须全部修完)。
已开发出一种通过离子排斥和离子交换分离,然后进行安培检测,测定空气样品提取物中甲醛的方法。已确定最佳分离的最佳洗脱液组成和分离柱,以及最佳检测的最佳工作电极、电解质和施加电位。使用内部标准化来校正检测器漂移。对有机酸、其他醛和醇进行了干扰研究。使用含有亚硫酸氢盐水溶液的吸收器进行收集,与 2,4-DNPH 方法(也使用吸收器)进行了并排比较研究。该方法的检测限为 1 ng(在溶液中)。该方法已用于测定 UNLV 校园空气中的甲醛浓度。该方法也可能适用于生物和食品样品分析。
摘要 本文研究了石榴树叶从水溶液中去除 Ni(II)、Cu(II) 和 Pb(II) 离子。发现生物吸附依赖于 pH,所有提及的金属离子的最高吸收量都发生在 pH 为 4 时。此外,还评估了其他参数(例如初始金属离子浓度和生物吸附剂和吸附剂的接触时间)的影响。对于所有研究的金属,平衡数据非常符合 Langmuir 模型。还得出结论,Freundlich 等温线不足以适用于这三种金属的平衡数据。Ni(II)、Cu(II) 和 Pb(II) 的生物吸附分别在 60、60 和 30 分钟内达到平衡。此外,二阶模型可以最好地描述金属的吸附速率。关键词:生物吸附、石榴、Langmuir、Freundlich、动力学模型