绿色氢能 SATC 还强调,氢气现在可以更清洁地生产(至少这是一些最新消息来源所表明的)。因此,需要重新审视关于是否支持电池电动汽车 (BEV) 或氢气的争论。绿色氢能是能源转型难题的重要组成部分。它被定义为“利用可再生电力将水分解为氢和氧而产生的氢气”。2 绿色氢能的副产品是水蒸气,可以被认为是清洁的。然而,在城市和脆弱的生态系统中,可能需要捕获水蒸气以避免意外的负面影响。在全球范围内,“我们将需要绿色氢能来实现净零排放,特别是在工业、航运和航空领域。与可再生能源不同,可再生能源是当今大多数国家和地区最便宜的电力来源,而电解绿色氢气生产需要在未来十年或二十年内大幅扩大规模,并将成本降低至少三倍。”2 然而,我们需要电力和电动汽车来支撑我们,直到绿色氢气能够大规模生产。2 氢气的可燃性和充电等问题
测量湿度(以及它的重要性)大多数人都非常清楚湿度对人类舒适度和健康的影响,尤其是当湿度与高温相结合时。湿度如何影响电气系统可能不太为人所知。例如,高湿度会导致液态水滴在电路上凝结,从而产生短路和腐蚀等问题。许多地理区域容易出现潮湿环境,尤其是热带地区。但即使在相对温和的气候下,也可能出现高湿度,具体取决于海拔、与水体的距离以及季节影响。此外,电气柜内部和周围的“微气候”可能导致与冷凝相关的问题。因此,国际电气测试协会 (NETA) 等标准机构通常要求在测试报告中包括湿度数据。绝对湿度与相对湿度 简单地说,湿度就是空气中的水蒸气量。通常用以下两种方法之一来测量: • 绝对湿度 (AH) 是给定体积的空气中存在的水蒸气质量。这通常以每立方米克 (g/m³) 表示,并随着空气体积的变化而变化。• 相对湿度 (RH) 是水蒸气密度 (单位体积质量) 与饱和蒸气压 (空气无法容纳更多水蒸气且液滴开始沉淀的点;这也称为露点) 下水蒸气密度之比。这通常以百分比表示,并随气压和温度而变化。在本应用说明中,湿度将表示为 RH。湿度与人 保持适当的湿度水平对于确保舒适健康的室内环境非常重要。湿度过高会使工作变得困难,尤其是在涉及体力活动的情况下。不那么直接(但同样重要)的是,高湿度会促进霉菌的生长,从而导致呼吸问题。它还会导致油漆剥落、铁质物体生锈以及因冷凝而光滑的表面。这些因素和其他因素会严重影响您的健康和安全。通常,湿度水平在 30% 到 40% 之间被认为是获得最大舒适度的理想水平。为了确保湿度保持在此范围内,设施采用各种 HVAC 系统,包括空调、受控机械通风和除湿机。为了测试其效率,定期用湿度计和其他湿度测量仪器检查湿度水平非常重要。在许多情况下,在较长时间内连续监测湿度也很有用,可以识别潜在的趋势和峰值。
绿色氢能 SATC 还强调,现在可以更清洁地生产氢气(至少最近的一些消息来源是这么表明的)。因此,关于是支持电池电动汽车 (BEV) 还是氢气的争论需要重新审视。 绿色氢能是能源转型难题的重要组成部分。它被定义为“利用可再生电力将水分解为氢和氧而产生的氢气”。2 绿色氢能的副产品是水蒸气,可以被认为是清洁的。然而,在城市和脆弱的生态系统中,可能需要捕获水蒸气以避免意外的负面影响。 在全球范围内,“我们将需要绿色氢能来实现净零排放,特别是对于工业、航运和航空业。与可再生能源不同(可再生能源是当今大多数国家和地区最便宜的电力来源),用于生产绿色氢能的电解需要在未来十年或二十年内大幅扩大规模并将其成本降低至少三倍。”2 但是,我们需要电力和 BEV 来支撑我们,直到绿色氢能能够大规模生产。 2 氢气的可燃性、充电等问题
猪舍设施内的压力清洗、水蒸气和腐蚀性气体对电气设备有害。这些装置具有防潮和防潮功能,并配有带垫片的聚碳酸酯外壳或类似物。有关更多信息,请参阅 OMAFRA 情况说明书《猪舍电气系统》、安大略省电气安全规范第 22 节和电气安全局 (ESA) 公告 22-3-5。• 所有电气设备必须由保险商承保
当我们周围的空气被压缩时,其水蒸气和颗粒浓度会急剧增加。例如,将室内空气压缩至 7 bar(e)/ 100 psig 会使蒸气含量或湿度增加约 8 倍,随后冷却会形成液态水。水量取决于具体应用。压缩空气实际上可以包含三种形式的水:液态水、气溶胶(雾)和蒸气(气体)。因此,从压缩空气中去除水分的有效方法至关重要。
通常,冷冻空气干燥器用于通用工厂空气。然而,压缩空气中仍残留大量水蒸气,远远超过大多数应用所能容忍的量(经过压力露点 (PDP) 为 -40˚F (-40˚C) 的干燥剂干燥器后的空气比经过 PDP 为 +37.4˚F (+3˚C) 的冷冻空气干燥器后的空气干燥约 60 倍)。许多关键应用要求 PDP 远低于冷冻干燥器提供的 PDP
通常,冷冻空气干燥器用于通用工厂空气。然而,压缩空气中仍残留大量水蒸气,远远超过大多数应用所能容忍的量(经过压力露点 (PDP) 为 -40˚F (-40˚C) 的干燥剂干燥器后的空气比经过 PDP 为 +37.4˚F (+3˚C) 的冷冻空气干燥器后的空气干燥约 60 倍)。许多关键应用要求 PDP 远低于冷冻干燥器提供的 PDP
简介 检查建筑结构内的潮湿和湿气是一个非常全面的主题。本白皮书重点介绍了对湿气的基本了解、寻找潮湿的一些技术以及如何使用数字湿度计诊断湿度水平。1.什么是潮湿?潮湿是由水进入房产(结构)和房产内积聚的湿气导致冷凝(生活方式)造成的。a.湿气进入房产(结构) 当水渗入建筑物结构时就会发生潮湿。常见原因有: • 雨水从缺少瓷砖或石板的屋顶渗出,从堵塞的排水沟溢出或渗透到窗框周围。• 由于防潮层缺陷或没有防潮层而导致的上升湿气。• 管道漏水、排水或溢流。您经常可以在墙壁和天花板上看到潮湿的“潮汐痕迹”。b. 冷凝(生活方式) 生活方式潮湿问题是由正常的日常活动(洗澡、洗衣服和烘干衣服、做饭和烧水)引起的,所有这些都会产生含有大量水蒸气的暖空气。如果暖空气无法通过打开的窗户或通风口逸出,它会四处移动,直到找到一个冷表面,然后冷却并形成冷凝水。冷凝发生在任何记录低于露点温度(饱和空气释放多余水蒸气的温度)的冷表面上。做饭时可以在浴室的镜子或厨房的窗户上看到这种情况。
月球陨石坑观测和传感卫星 (LCROSS) 任务发现的数百万吨冰水被认为是月球上最宝贵的资源。从月球风化层中提取这些水冰需要非常高的热能输入,相反,在近真空环境中捕获这些水蒸气也需要很大的冷却能力。因此,有必要为未来由放射性同位素驱动的月球冰采矿车开发专用的热管理系统 (TMS)。根据 SBIR 第一阶段计划,Advanced Cooling Technologies, Inc (ACT) 与 Honeybee Robotics (HBR) 合作开发了一种热管理系统,该系统可以战略性地利用核动力源的废热来升华月球冰土中的水蒸气,并使用月球环境温度作为散热器来重新冻结冷阱容器内的升华蒸气。这样,就可以在降低系统质量和占地面积的情况下,最大限度地减少冰提取和蒸汽收集所需的电能。进行了初步权衡研究,设计了 TMS 的多个热组件,包括基于废热的热芯和热管散热器冷阱罐。开发并测试了概念验证原型。设计了一个可能满足 NASA 采矿目标的初步全尺寸系统,并估算了采矿效率、系统质量/体积和功耗(电能和热能)。
目前,聚合物基湿度传感器面临诸多限制,包括合成能耗高、灵敏度低和响应时间慢。本研究提出了一种创新方法来克服这些挑战,该方法基于一种强大的全水基原位微乳液聚合。整个过程中使用水可减轻对环境的负面影响。选择用浓度范围为 0.2-1.0 wt% 的还原氧化石墨烯 (rGO) 增强的硫醇烯聚合物来制造这些化学电阻传感器。所选硫醇烯具有高疏水性和半结晶性质,表明即使长时间暴露在潮湿环境中也能抵抗早期分层。加入 rGO 不仅可以赋予复合膜导电性,还可以增强复合膜的机械和防水性。0.6% rGO 复合材料表现出最佳的湿度传感电阻,在三个暴露周期中对 800-5000 ppm 的水蒸气浓度表现出快速而一致的响应。此外,该传感器对水蒸气的选择性优于甲苯、丙醇和 4-甲基-2-戊醇,这归因于水性薄膜的高表面亲水性和固有孔隙率,以及基质内 rGO 薄片的网络结构。总之,这项研究开创了一种基于聚合物的湿度传感新方法,解决了关键限制,同时提供了更高的灵敏度、快速的响应时间和卓越的选择性。