问:在克莱兵营和威斯巴登驻地外住房区之间建立直达班车线路(双向)的前景如何?过去几个月来,往返克莱兵营的交通量显著增加,在高峰时段尤其明显。在 IMCOM-Europe 总部迁至克莱北后,只要只有一个出入克莱兵营的出入控制点,这种情况就会持续下去。在克莱兵营停车是另一个挑战。如果有有吸引力的交通替代方案,整体交通和停车状况可以得到缓解。更确切地说,克莱兵营和威斯巴登驻地外住房区(特别是 Aukamm Housing)之间建立直达班车。根据目前的巴士时刻表,从克莱兵营到 Aukamm Housing 的出站巴士首先进入和离开 Hainerberg,然后是 Crestview,最后到达 Aukamm Housing。这种通勤时间太长,因此无法真正替代开车上班。克莱·卡瑟恩 (Clay Kaserne) 和 Aukamm Housing 之间有直达班车连接(以及克莱·卡瑟恩 (Clay Kaserne) 和 Hainerberg 以及克莱 (Clay) 和 Crestview 之间的直达班车连接,
问:在克莱兵营和威斯巴登驻地外住房区之间建立直达班车线路(双向)的前景如何?过去几个月来,往返克莱兵营的交通量显著增加,在高峰时段尤其明显。IMCOM-Europe 总部迁至克莱北后,只要只有一个出入克莱兵营的出入控制点,这种情况就会持续下去。在克莱兵营停车是另一个挑战。如果有有吸引力的交通替代方案,整体交通和停车情况可能会得到缓解。更准确地说,克莱兵营和威斯巴登驻地外住房区(特别是 Aukamm 住房)之间建立直达班车连接。根据目前的巴士时刻表,从 Clay Kaserne 到 Aukamm Housing 的出站巴士首先进入和离开 Hainerberg,然后是 Crestview,最后到达 Aukamm Housing。这段通勤时间太长,因此无法真正替代开车上班。Clay Kaserne 和 Aukamm Housing 之间的直达班车连接(以及 Clay Kaserne 和 Hainerberg 以及 Clay 和 Crestview 之间的直达连接,
2024 年,Inlet 为三家商业企业提供了修复资金,并计划在 Inlet 内多家企业经常光顾的地点进行大型多用途全面修复。ACCC 将与大西洋城市和大西洋县改善局 (ACIA) 合作,完成对各种商业地产的外墙改善。ACIA 将管理整个项目,监督合格企业的入驻、制定工作范围和时间表、施工监督、必要的许可证和报告。Inlet 有几个商业区可能会让人感觉不受欢迎或容易被外来者忽视。通过“整容”美化计划,ACCC、企业主和合作伙伴将增强商业走廊的活力。该项目旨在促进商业振兴和经济发展,同时改善社区条件。最终,它将创建一个更具活力、更适合步行、用途多样的商业区,将这些区域转变为居民和游客的目的地。该计划旨在增加就业机会,改善社区外观,提高居民对开放空间的满意度,预计到 2025 年完成五个小型企业外墙建设。
探地雷达 (GPR) 是一种成像系统,可用于观察现场地下情况,以研究土壤的层组成或埋藏物体的存在。由于地面的电磁特性,此类图像通常具有非常低的信噪比 (SNR)。此外,根据设计,埋藏物体被观察为双曲线,其形状可能与物体类型(例如空腔或管道)相关联。在这种情况下,埋藏物体的分类在民用应用中非常重要,例如恢复埋藏天然气管道的位置 [1] 或军事应用,例如地雷探测 [2]。为了进行这种识别,一些研究考虑使用信号反演技术 [3] 来提高 SNR,以便地球物理学家进行手动解释。当需要处理大量图像时,这种解决方案可能不切实际,因为它需要专门的人力资源。因此,自动识别方法已成为必需,并受到社区的关注。GPR 信号的自动分类分两步进行。首先,感兴趣区域(ROI)对应于
传统的储存器计算 (RC) 是一种浅层循环神经网络 (RNN),具有固定的高维隐藏动态和一个可训练的输出层。它具有只需要有限训练的优点,这对于训练数据极其有限且获取成本高昂的某些应用至关重要。在本文中,我们考虑了两种将浅层架构扩展为深度 RC 的方法,以在不牺牲潜在优势的情况下提高性能:(1)将输出层扩展为三层结构,促进对神经元状态的联合时频处理;(2)顺序堆叠 RC 以形成深度神经网络。利用深度 RC 的新结构,我们重新设计了具有正交频分复用 (MIMO-OFDM) 信号的多输入多输出物理层接收器,因为 MIMO-OFDM 是第五代 (5G) 蜂窝网络的关键支持技术。 RNN 动态特性与 MIMO-OFDM 信号时频结构的结合,使深度 RC 能够处理非线性 MIMO-OFDM 信道中的各种干扰,从而实现比现有技术更高的性能。同时,与依赖大量训练的深度前馈神经网络不同,我们引入的深度 RC 框架可以使用与 5G 系统中基于传统模型的方法相同数量的导频提供不错的泛化性能。数值实验表明,基于深度 RC 的接收器可以提供更快的学习收敛,并有效减轻未知的非线性射频 (RF) 失真,与浅层 RC 结构相比,误码率 (BER) 提高了 20%。
1美国北安普敦史密斯学院生物科学系,美国美国,美国2号生物科学系,昆尼皮亚西亚三世大学,昆尼皮亚克大学,汉姆登,康涅狄格州,美国康涅狄格州,美国寄生疾病3实验室,美国国家医学院,美国伯兰群岛,美国,美国,美国,美国,美国,美国,美国,美国,美国,美国,美国,美国,美国,美国,美国。 Missouri, United States of America, 5 Laboratory of Molecular Parasitology, Lindsley F. Kimball Research Institute, New York Blood Center, New York, New York, United States of America, 6 Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany, 7 German Center for Infection Research (DZIF), Partner-Site Bonn-Cologne, Bonn, Germany, 8 Center for Global Health Infectious Disease Research, University of South Florida, Tampa, Florida, United States of America, 9 Parasite and Vectors Research Unit, Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon, 10 Research Foundation in Tropical Diseases and the Environment, Buea, Cameroon, 11 NTD-SC, Task Force for Global Health, Atlanta, Georgia, United States of America, 12 RLMF, The END Fund, New York, New美国,美国,美国马萨诸塞州阿默斯特大学,美国马萨诸塞州阿默斯特大学的13分子和蜂窝生物学计划
。cc-by 4.0国际许可(未经Peer Review尚未获得认证)是作者/资助者,他已授予Biorxiv的许可证,以永久显示预印本。它是制作