Alessia Marino A,Alfredo Aloise A,B,Hector Hernando C,Javier Fermo C,Daniela Cozza A,Emanuele Giglio A,Massimo Migliore A,Patricia Pizarro C,D,D,Girolamo Giorolamo a,David P.
摘要:通过表面活性剂介导的策略制备了分层ZSM5和Y沸石,NH 4 OH改变了处理的持续时间和CTAB表面活性剂的量,并作为关键胶束浓度的参考倍数(CMC)。使用粉末X射线衍射,N 2吸附等温线在-196℃以及SEM和TEM显微镜表征。在80°C的乙酸盐中用乙酸盐的弗里德尔 - 工艺酰化评估了催化性能。碱性表面活性剂介导的治疗对两个沸石的影响不同。对于ZSM5,CTAB分子聚集体几乎无法在中型毛孔内扩散,主要导致晶间的中源性和外部表面积增加,而没有阳性催化影响。另一方面,对于大孔沸石,CTAB分子聚集体很容易扩散并促进胶束周围晶体单位的重排,从而导致毛孔的肿大,即晶体内孔隙度。用CTAB量为CMC的32倍处理了12小时的优化基于Y的样品,显示出添加较高量的表面活性剂时未观察到的产品产量和速率常数的增加。在400℃的热处理上,用消费催化剂的再利用显示出约90%的再生效率,显示了改良催化剂的良好潜力。
摘要:固体聚合物电解质(SPE)将允许在下一代固态锂离子电池(LIBS)中提高安全性和耐用性。在SPE类中,三元复合材料是一种合适的方法,因为它们提供了高室温离子电导率,出色的循环和电化学稳定性。In this work, ternary SPEs based on poly(vinylidene fluoride- co - hexafluoropropylene) (PVDF-HFP) as a polymer host, clinoptilolite (CPT) zeolite, and 1-butyl-3-methylimidazolium thiocyanate ([Bmim][SCN])) ionic liquid (IL) as fillers were produced by在不同温度(室温,80、120和160°C)下溶剂蒸发。溶剂蒸发温度会影响样品的形态,结晶度和机械性能以及离子电导率和锂转移数。分别在室温和160°C下制备的SPE获得了最高离子电导率(1.2×10 - 4 S·CM - 1)和锂转移数(0.66)。电荷 - 放电电池测试显示,在160°C下制备的SPE,分别在C/10和C/2速率下分别在C/10和C/2速率下的排放能力值最高值。我们得出结论,在SPE制备过程中,对溶剂蒸发温度的良好控制使我们能够优化固态电池性能。关键字:三元复合材料,PVDF-HFP,蒸发温度,固体聚合物电解质,锂离子电池
摘要 沸石是一种铝硅酸盐矿物,广泛用于工业应用,包括作为商业吸附剂和催化剂。本概述重点介绍由煤粉煤灰 (CFA) 合成的沸石。人类活动和工业发展产生大量污水,对生态产生重大影响。工业废水可能由不同类型的污染物组成,但这项工作特别关注重金属。重金属离子因其毒性和致癌性而成为最危险的污染物之一。本概述涵盖了最近的科学文献,重点是使用 CFA 衍生的沸石从复制工业废水的合成溶液和实际废水流中去除镍、汞、锰、铜、锌、镉、铅、铬、钴。本综述引用的许多论文中描述的结果对工业废水处理操作很有希望。此外,多种可能的合成沸石为节能、针对特定污染物的工业重金属修复提供了一种途径。
分子建模在发现沸石有机结构导向剂 (OSDA) 方面发挥着重要作用。通过量化主客体相互作用的强度,可以选择具有成本效益的分子,以最大限度地结合给定的沸石骨架。在过去的几十年中,人们使用了各种方法和理论水平来计算这些结合能。然而,对于高通量虚拟筛选工作的最佳计算策略,尚无共识。在这项工作中,我们比较了从静态和时间平均模拟中获得的 272 个沸石-OSDA 对的密度泛函理论 (DFT) 和 Dreiding 力场计算的结合亲和力。借助自动化软件,我们表明冻结姿势方法的 Dreiding 结合能与 DFT 能量相关性最好。它们对初始晶格参数和优化算法的选择也不太敏感,并且比时间平均方法的计算成本更低。此外,我们证明了,通过分子动力学模拟更广泛地探索构象空间,尽管成本高出几个数量级,但与冻结姿势方法相比,结合能趋势并没有显著改善。代码和基准数据是开源的,为计算沸石-OSDA 对中的结合能提供了可靠且计算效率高的指导。
随着经济的不断发展,人类对能源的需求日益增加,目前化石燃料作为主要能源仍然发挥着重要作用,但由此产生的环境问题不容忽视,因此如何更高效的利用能源是一个重要问题。目前已证明催化是高效利用能源的主要途径之一。在催化研究中,催化剂是催化技术的核心因素,催化材料的发展将促进催化剂和催化工艺的发展。在众多催化材料中,沸石因具有均匀的孔结构、高的比表面积和优异的稳定性,被广泛应用于吸附、分离、催化等工业领域[1–4]。因此,人们致力于沸石的设计合成,如生成新型沸石结构[5-13]、开发沸石合成新路线[14-19]、沸石形貌的可控[20-24]、制备微/介孔沸石[25-29]、以天然铝硅酸盐(如蒙脱石、高岭土、埃洛石)作为硅/铝绿源合成沸石[30-35]。值得注意的是,现代沸石的合成往往需要使用有机模板剂,由于有机模板剂的结构多样性,人们已经成功合成了各种新的沸石结构。然而使用有机模板剂也存在许多缺点,具体如下:(1)大多数有机模板剂价格昂贵、有毒,大大增加了合成成本; (2) 为了获得开放的微孔,在高温煅烧过程中需要消耗能量用于去除有机模板,同时会产生大量的NOx和CO2等有害气体;(3) 沸石骨架在高温煅烧过程中容易被破坏[16]。显然,无论从消除环境污染还是能源利用的角度考虑,使用有机模板都限制了沸石的进一步应用。因此,在有机模板中合成沸石是十分有必要的。
混合玻璃的形成为加工块状金属有机骨架 (MOF) 提供了一种潜在途径,然而,只有少数 MOF 被证明是可熔的。对于不可熔的沸石咪唑酯骨架 ZIF-8,最近发现离子液体 (IL) 的加入可将熔化温度降低到热分解温度以下,从而能够形成 IL@ZIF-8 玻璃。本文报道了 IL 的加入对一些沸石咪唑酯骨架 (ZIF) 和其他 MOF 在加热时的焓响应的影响。对于 ZIF-62、ZIF-67、ZIF-76 和 MIL-68,金属位点的可及性和 MOF 的孔隙率决定了 IL@MOF 复合材料的可熔性。 IL 的加入使得 ZIF-76 玻璃得以形成,并显著降低了 ZIF-62 的熔化温度,但似乎无助于 ZIF-67 或 MIL-68 的熔化(在热分解之前)。尽管 IL 的热稳定性极限在控制 IL@MOF 复合材料的熔化窗口方面起着重要作用,但通过仔细选择熔化温度,可以在很大程度上避免熔化时的热分解和成分变化。IL 的加入似乎为熔化 MOF 提供了一种更通用的途径,但需要仔细适应特定的 MOF 架构。
一家安全,健康与环境研究所,胡志明市,越南B纳里技术开发公司有限公司,南京,江苏210012,中国c供水,卫生与环境工程部,伊尔德尔特水供应,卫生与环境工程系泰米尔纳德邦632014,印度E环境健康研究中心,库尔德斯坦医学科学研究所,库尔德斯坦库尔德斯坦省库尔德斯坦省库尔德斯坦省72m2 mhq,伊朗应用科学学院72m2 mhq越南 *通讯作者。电子邮件:nguyentanphong@tdtu.edu.vn
沸石是一种结晶多孔的铝硅酸盐,几十年来一直是化学工业的重要组成部分,对其结构进行微调 1–6 是开发优质功能材料的一种有前途的方法。Al 3+ 同晶取代沸石骨架的四面体位点 (T 位点) 可一对一地提供一个负电荷,该负电荷可作为单价阳离子的离子交换位点。沸石表面通过离子交换捕获二价阳离子有利于水净化 7,8 和生产独特的催化剂,其中沉积的二价金属阳离子可作为活性位点。9,10 为了实现这些目标,考虑到广为接受的 Loewenstein 规则,根据该规则,由于稳定性差,最近相邻的 Al 对 (即 Al–O–Al 序列) 无法形成,11 沸石骨架需要通过由第二位组成的离子交换位点来富集