■ 注意事项 ● 光学方面的建议 • 本装置的镜头需要保持清洁。灰尘、水或油等可能会损害本装置的特性。请在实际应用中予以考虑。 • 请勿清洗。清洗可能会损害光学系统等的特性。由于本产品并非防清洗设计,请在实际使用时确认耐化学性。 ● 特性方面的建议 • 如果在发射器和检测器部分前面设置光学滤镜,建议使用在本产品的 LED 发射波长范围(λ = 850 ± 70nm)内具有最高透射率的光学滤镜。滤镜的两面应为镜面抛光。此外,由于根据保护盖和本产品之间的距离或保护盖的厚度,可能不能满足特性,请在实际应用中充分确认操作后再使用本产品。 • 如果在传感器和检测物体之间有物体靠近传感器的发射器侧,请在充分确认该传感器的特性不会因该物体而改变后再使用该设备。 • 当探测器暴露在太阳、钨丝灯等的直射光下时,有时无法准确测量距离。请考虑探测器不暴露在直射光下的设计
尺寸(图 3)(七个 ROI)。与使用掩蔽的方法相比,该方法可以通过最小化不属于皮肤的像素数量来优化信噪比,而使用掩蔽的方法在某些条件下是近似的。我们选择空间 L * u * v 的色度分量 * u 来形成 PPG 信号。*u 分量代表红色和绿色之间的颜色,v* 代表黄色和蓝色之间的颜色。根据血红蛋白吸收率最好的波长范围,通过分析色度 *u 更容易观察到光电容积描记变化(我们选择此颜色空间的原因)。将为捕获的每个帧计算空间平均值,从而在我们的 PPG 信号中形成一个点。对于 N 个捕获的帧,将形成 N 个点的信号。对每个 ROI 进行此空间平均,为每个 ROI 创建一个 PPG 信号:在我们的例子中,我们将有七个 PPG 信号。当整个表面未被均匀照亮时,可获得最佳质量的信号:当其他区域的信号很少或没有可用信号时,其中一个区域可能具有非常好的信号。
■ 注意事项 ● 光学方面的建议 • 本装置的镜头需要保持清洁。灰尘、水或油等可能会损害本装置的特性。请在实际应用中予以考虑。 • 请勿清洗。清洗可能会损害光学系统等的特性。由于本产品并非防清洗设计,请在实际使用中确认耐化学性。 ● 特性方面的建议 • 如果在发射器和检测器部分前面设置光学滤波器,建议使用在本产品的 LED 发射波长范围(λ = 870 ± 70nm)内具有最高透射率的光学滤波器。滤波器的两面应为镜面抛光。此外,由于根据保护盖和本产品之间的距离或保护盖的厚度,可能存在无法满足特性的情况,请在实际应用中充分确认操作后再使用本产品。 • 如果在传感器和检测物体之间有物体靠近传感器的发射器侧,请在充分确认该传感器的特性不会因该物体而改变后再使用该设备。 • 当探测器暴露在太阳、钨丝灯等的直射光下时,有时无法准确测量距离。请考虑探测器不暴露在直射光下的设计
读数 七段,3 1/2 位数字,发光二极管显示 波长范围 激发 340-750,使用石英卤素灯(使用汞灯时为 254、313 nm) 发射 340-650(使用红色敏感 PMT 时为 340-750 nm) 波长选择 可互换,外部插入过滤器 灵敏度 10 皮克/毫升(异硫氰酸荧光素)15 万亿分之一(二水硫酸奎宁,QSO 4 ) 浓度范围 0-1999 分辨率 满量程的 0.05% 荧光线性通常在 1% 以内。检测器 光电倍增管 标准样品架 可容纳 12 x 75 毫米圆形比色皿,并提供附件选项。温度范围 工作时 10 至 38 ° C,存储时 0 至 75 ° C。湿度 <95% 输出 0 - 200 mVDC,荧光线性 电源要求 100、120、220、240 VAC,50/60 Hz,可切换,75 瓦 尺寸 宽 39 厘米 (15 3/8") x 深 29 厘米 (11 1/2") x 高 13 厘米 (4 1/2") 重量 型号 450-000、450-003:7.3 千克 (16 磅。),型号 450-005:8.2 千克 (18 磅)。
摘要 - 在本文中,通过有限元方法(FEM)研究了等离子bragg光栅过滤器的微型设计。过滤器基于沉积在石英基板上的等离激元金属 - 金属波导。为近红外波长范围设计的波纹布拉格光栅均在波导的两侧结构。通过改变过滤器设计的几何参数来研究过滤器的光谱特性。结果,在λbragg= 976 nm处获得的最大ER和带宽为36.2 dB和173 nm,滤光片占地面积分别为1.0×8.75 µm 2。可以通过分别增加光栅周期和光栅的强度来进一步改善ER和带宽。此外,Bragg光栅结构非常容易接受介质的折射率。这些特征允许使用材料,例如金属 - 绝缘体 - 金属波导中的聚合物,可以进行外部调整,也可以用于折射率传感应用。所提出的Bragg光栅结构的灵敏度可以提供950 nm/riU的灵敏度。我们认为,本文提出的研究提供了一个指南,以实现可用于过滤器和折光索引传感应用中的小脚印等离子布拉格光栅结构。
基于GE的集成光子回路过去10年中,基于锗(Ge)的光电元件得到了发展,拓展了硅(Si)光子回路的潜力。光电探测器、调制器和Ge-on-Si激光器已经在中红外区得到演示。Ge的主要优势在于它的透明窗口大,波长范围从1.8至14μm,并且与CMOS兼容。Ge和SiGe合金很快被视为开发集成光子元件的首选材料。厚Ge和SiGe层(高达40%的Ge)通常在工业外延集群工具中通过化学气相沉积在200mm和300mm Si(001)晶片上生长。关于Ge和SiGe生长的更多细节可以在参考文献[1]中找到。 SiGe 或绝缘体上的 Ge(如 SiN)晶片可从之前的外延中制造出来。在这种情况下,需要将两个晶片键合在一起:第一个晶片具有 Ge 或 SiGe 外延层,上面覆盖有 SiNx 层和薄 SiO 2 层,第二个晶片是氧化 Si 晶片。在 SiO 2 到 SiO 2 键合之后,起始
具有异质整合技术的Hutonic Integrated Ciress(PIC)已成为硅光子学的激烈研究领域。1 - 3)他们将不同的材料技术引入商业硅芯片的潜力为将高性能图片与各种光学功能进行大规模整合开辟了道路,使用常规的硅开机器(SOI)平台实现了具有挑战性的挑战。4 - 6)尤其是,通过直接键合的混合III - V/SOI激光器的杂基整合为电信光源提供了适当的解决方案,用于电信和数据中心应用程序接近1.3和1.55μm波长范围。2,7)通过使用分布式的bragg refector,Ring Resonator和Loop Mirror设备,通过使用分布式的Bragg Remotector和Loop Mirror设备来实现在SOI电路内的这种集成在SOI电路内的这种集成。8 - 12)此外,还报道了Hybrid III - V/SOI环激光器,其中光线从III - V/SOI环激光器耦合到通过方向耦合器耦合到Si Bus-WaveGuide。13 - 16)
1996 年是 W. K. 伦琴发现 X 射线一百周年,人们庆祝了这种“奇异射线”提供的深刻见解。除了普遍用于对视觉不透明系统的内部结构进行成像之外,X 射线在阐明物质的几何结构和电子结构方面也具有重要应用。除了同步辐射设备外,在普通实验室环境中可用的传统 X 射线源的波长非常适合揭示晶体固体和生物分子中的原子排列。此外,吸收和发射的 X 射线的光谱可以揭示原子、分子和材料的电子结构。类似地,核 β 射线反映原子核的能级结构,其波长范围远低于 X 射线波长,就像 X 射线波长低于可见光波长一样。 1912 年首次报道的 X 射线衍射将 X 射线波长与晶格尺寸联系起来,但未能将这两个尺度与宏观物体的尺寸联系起来。从 20 世纪 30 年代初到 70 年代初,X 射线光谱对确定 N A 、h/e 和 hc/e 等基本常数做出了重要贡献。然而,这些测量受到 X 射线尺度与可见参考波长之间联系不确定性的限制。直到七十年代中期,唯一确立的直接联系是
摘要 - 由于它们在光学通信,传感和可穿戴系统中的潜在应用,因此具有广泛的研究兴趣。但是,它们的操作频率仅限于10 MHz,该MHz远低于某些应用程序的要求。在这里,我们提出了一种基于在灵活的塑料铝箔上制造的Ingaas纳米桥的高性能光电探测器,在该塑料箔上制造,在该塑料箔上,在其中通过简单的湿蚀刻步骤将外延层与粘合剂粘合,然后从父层INP底物提起。不涉及机械抛光,从而降低了制造程序的复杂性。富灵光电探测器表现出令人印象深刻的特征,包括801 PA的低黑暗电流,0.51 A/W的响应性,高检测性为5.65×10 10 Jones,在1550 Nm的6 V为6 V的施加电压下,在70 dB的线性动态范围和70 dB的线性动态范围。此外,我们通过优化了相互插入的检测电极的设计,优先考虑了光生载体的有效和高速收集。动态测量表明,光电探测器超过2.03 GHz的3 dB带宽,使其能够支持4 GB/s的数据通信速率。此外,这种灵活的光电探测器显示了较大的操作波长范围,几乎覆盖了整个
振幅[3,4]光散射的方向性[5,6]自旋[7,8]和轨道角动量[9,10],而不受金属基方法固有材料损耗的限制。特别是,由近场增强驱动的应用,如生物分子传感,依赖于高共振品质因数(Q)(定义为共振波长除以线宽),因此需要高的电磁近场强度来实现最大样本灵敏度。[11,12]从米氏理论等中得知,共振品质因数和共振器折射率[13]之间的固有相关性,因此推动了基于高折射率材料体系(如硅[14,15]锗[16,17]或磷化镓)的全电介质纳米光子学的发展。 [18,19] 尽管这些材料在近红外 (NIR) 和红外 (IR) 光谱区域具有出色的高 Q 共振特性,但由于它们的带隙能量处于中间水平,因此在整个可见光谱范围内都伴随着较高的材料固有带间吸收损耗。由于这些基本的材料限制,在整个可见光谱范围内都缺乏无损高折射率材料。[20–23] 特别是,对于可见波长范围,存在大带隙和无损材料的竞争