由于地面条件恶劣,软质海洋粘土沉积物下为坚硬的基岩,斯堪的纳维亚半岛的许多地下项目都面临着隧道进水沉降风险的挑战。这些充满粘土的洼地中的孔隙压力降低会对附近的建筑物造成损坏,这是奥斯陆基础设施建设的主要风险之一。本文介绍了奥斯陆地区 44 条隧道的大量数据库,这些隧道建于 1975 年至 2020 年之间。数据包括开挖前注浆后测得的进水量、孔隙压力降低、开挖前注浆工作量和地质参数。对数据进行分析以确定关键参数之间的趋势和关系,例如给定进水率的预期孔隙压力降低和获得给定注浆区水力传导率所需的注浆工作量。分析表明,在未来的项目中,有必要将重点放在孔隙压力监测上,而不是进水,以降低不可接受的孔隙压力降低的风险。提出了如何优化开挖前灌浆的监测和跟踪以确保满足所需的防水性的建议。
由于地面条件恶劣,软质海洋粘土沉积物下为坚硬的基岩,斯堪的纳维亚半岛的许多地下项目都面临着隧道进水沉降风险的挑战。这些充满粘土的洼地中的孔隙压力降低会对附近的建筑物造成损坏,这是奥斯陆基础设施建设的主要风险之一。本文介绍了奥斯陆地区 44 条隧道的大量数据库,这些隧道建于 1975 年至 2020 年之间。数据包括开挖前注浆后测得的进水量、孔隙压力降低、开挖前注浆工作量和地质参数。对数据进行分析以确定关键参数之间的趋势和关系,例如给定进水率的预期孔隙压力降低和获得给定注浆区水力传导率所需的注浆工作量。分析表明,在未来的项目中,有必要将重点放在孔隙压力监测上,而不是进水,以降低不可接受的孔隙压力降低的风险。提出了如何优化开挖前灌浆的监测和跟踪以确保满足所需的防水性的建议。
摘要 隧道掘进机施工过程中涉及的主要问题之一是尾部间隙注浆。该间隙位于隧道衬砌外径和开挖边界之间,并用高压注浆材料填充。本文研究了 FLAC3D 软件中三种不同的间隙注浆建模方法,特别关注注浆材料硬化过程的影响。在第一种方法中,将注浆在注入过程中模拟为液体,考虑 TBM 的推进及其硬化时间,将注浆特性转变为固体注浆的性质。在第二种方法中,在模型中将注浆材料从注入开始时就视为具有固体注浆性质,忽略液相。在第三种方法中,不考虑模型几何中的回填注浆区域,只在盾构末端和已安装管片后方施加注入压力。根据最大地表沉降评估了这三种方法的有效性。这三种方法估算的表面沉降量不同,但第一种方法的结果更接近监测数据。同样作为敏感性分析,在这项工作中,我们研究了液体和固体灌浆材料的弹性模量对表面沉降量的影响,这有助于更准确地了解灌浆混合物的影响。