摘要:锂离子电池的质量受阴极的显着影响。除了在容量和循环寿命方面的优势外,NMC阴极具有较低的电子电导率,这可能会影响电子传输。为提高电导率,可以使用导电添加剂添加阴极材料。通常用作锂离子电池阴极中的导电添加剂是乙炔黑色。另一方面,石墨烯具有较高的特性,例如其较大的活动表面积和电导率。进行了这项研究,以将AB,石墨烯及其组合作为NMC阴极的导电添加剂进行比较。测试结果表明,AB和石墨烯与1:1的比率的组合产生的最高特异性能力,即161.32 mAh/g。该组合产生的速率性能结果非常好,在3c电流下,分别为排放和充电率的效率分别为91.38%和80.07%的容量保留。在50个周期后的生命周期测试中,AB和石墨烯的组合为1:1,导致容量的保留率为93.26%,高于仅使用AB或石墨烯作为阴极的导电材料的电池。因此,在锂离子电池中,石墨烯和AB作为导电材料的组合可以产生具有良好性能的电池。
摘要:在改善锂金属(LI)库仑效率的虽然是电解质设计的重点,但高电流下的性能较少,但与实际应用相关。在这里,我们使用三种类型的弱溶解荧光电解质来评估电荷率依赖性循环稳定性。尽管在低电流密度下的所有三个电解质中都实现了良好的循环寿命,但它们均表现出在各种阈值电流密度(2至5.2 mA cm -2之间)的柔软短路行为。我们将电流依赖性电极形态归因于LI生长和残留的固体电解质界面(RSEI)生长过程。在早期周期中,Li形态指导了RSEI结构的形成。在后来的周期中,RSEI结构部分影响了LI的生长。在低电流密度下,RSEI不均匀,具有较大的空隙,可用于随后的大量锂生长。在高电流密度下,RSEI变得更加致密,这加剧了通过RSEI的高表面/体积比率的生长。在三个弱溶剂荧光电解质中,观察到离子电导率较低的电解质在较少的周期内和较低的电荷电流密度下短。我们的工作表明,电解质中的快速离子传输可能是高能密度锂金属电池> 1c充电的稳定操作的理想特征。■简介
气候变化挑战需要在技术领域的全球温室气体(GHG)排放量显着减少。数字技术,尤其是视频流,计算大多数互联网流量,也不例外。视频流需求随着远程工作,多媒体通信服务而增加(例如,WhatsApp,Skype),视频流内容(例如,YouTube,Netflix),视频分辨率(4K/8K,50 fps/60 fps)和多视频视频,使能耗和环境足迹至关重要。这项调查通过为研究人员,开发人员和工程师,服务提供商,托管平台和消费者提供有关最先进和潜在的未来方向的见解,从而有助于更好地了解可持续和高效的视频流技术。我们扩大了这项调查的关注内容,基于观察到的观察,即视频流下的连续活动的网络设备消耗了与传输数据类型无关的大量能量。我们提出了影响视频流中能源消耗的因素的分类法,例如编码方案,资源需求,存储,内容检索,解码和显示。我们确定了需要进一步研究以提高能源效率的视频流中的显着弱点:(1)HTTP实时流中的固定比特率梯子; (2)现有视频播放器的无效硬件利用; (3)缺乏涵盖可再现研究的各种设备类型和编码参数的全面开放能量测量数据集。
准确的电池模型对于电池管理系统(BMS)应用至关重要。但是,现有模型要么不描述电池物理学,要么在实用应用上太密集了。本文提出了一个非线性等效电路模型,具有不同的使用动力学(NLECM-DI Q),该模型在现象学上描述了主要的电化学行为,例如欧姆,电荷转移动力学和固相动力学和固相。采用多键方法来确定高频动力学的元素,以及优化的分布式SOC依赖性分散分歧模型模型块被优化以说明长时间的动态。模型识别程序是在三电极实验细胞上进行的,因此为每个电极开发了NLECM-DI效率,以获取完整的电池电压。结果表明,与常规的ECM相比,NLECM-DI将电压均方根误差(RMSE)降低了49.6%,并且在长时间放电中具有与NEDC驾驶周期中参数化的SPME相当的精度。此外,在不同电流下,负电极在不同的电极下的不同特性的变化被确定为电池模型的大型低范围误差的主要原因。此外,分散过程被确定为长时间放电中的主要电压损耗,并且欧姆电压损耗被确定为NEDC驱动器下的主要动态。
1. 概述 各种社会、经济和环境因素都会影响基因组学创新的应用,包括法律和监管要求,特别是当它们对现行实践产生重大变化时。目前,通过大规模应用研究项目(LSARP)开展的基因组学对社会影响的研究(GE 3 LS 研究 1 )有助于更好地理解这些因素,主要在个别项目的背景下,也与各个行业相关。然而,为了确保有效和负责任地转化创新的基因组 2 应用,加拿大基因组组织制定了基因组学社会跨学科研究团队计划,以促进研究人员和其他关键利益相关者之间的合作与对话,这些利益相关者的行业将因基因组学的进步而发生变化。具体而言,该计划旨在加强研究人员、用户和其他利益相关者之间的联系,讨论可能影响基因组技术的采用和应用(包括商业化)的问题。团队计划的目标是支持和加强 GE 3 LS 研究,以解决影响基因组学研究成果的采用和吸收的重要和总体挑战,和/或加速与用户(包括部门内的政策制定者)相关的研究的综合和传播。本申请征求书 (RFA) 支持以下三个流下的提案,目标是为每个流中的至少一个团队提供资金:
摘要 - 在锂离子(锂离子)电池模型的领域,由于其简单性,长期以来,单个粒子模型(SPM)被认为是在嵌入式应用中迎来物理启发模型(PIMS)时代的有希望的减少订单模型(ROM)候选者。然而,在高负载电流下,标准SPM在计算电池的端子电压时表现出较差的精度,从而使其不合适,可以作为植物模型在状态估计任务中。对文献的显着电解质增强SPM的全面评估表明,当前的解决方案在数学上是棘手的或过于简单的。对于电解质中的离子浓度,跨越计算复杂性和数学障碍的边界的众所周知的二次近似模型显示出时间性能较差,尤其是在当前的集电极接口上。在这项工作中,我们保留了二次近似模型的空间动力学,同时使用系统识别技术为其时间动力学提出了一种新颖的方法。通过使用相关子系统的线性近似值,我们确定了每个电极区域内电解质中锂离子单位面积的摩尔数的离散时间传递函数,从而提高了电解质浓度的时空精度。然后,我们使用新的系统识别电解质动力学增强标准SPM,以达到电解质增强的复合单粒子模型(EECSPM)。最后,与现有的最先进的面前相比,我们将表现出EECSPM的出色性能,从而代表了在实时应用程序中使用PIMS的具体目标。
mxene作为一种不同的储能系统的电极材料进行了研究。实验结果表明,MXENES作为阳极材料具有出色的循环性能,尤其是在较大的电流密度下。但是,可逆能力相对较低,这是满足工业应用需求的重要障碍。这项工作通过原位方法合成了N掺杂的石墨烯样碳(NGC)插入的Ti 3 C 2 t X(NGC-Ti 3 C 2 t X)van der waals异质结构通过原位方法。所制备的NGC-TI 3 C 2 T X van der waals异质结构用作钠离子和锂离子电池电极。对于钠离子电池,在20 mA g-1的特定电流中实现305 mAh g-1的可逆特异性容量,比Ti 3 C 2 t X X X X的特定电流高2.3倍。对于锂离子电池,在20 mA g-1的特定电流下,可逆能力为400 mAh g-1,是Ti 3 C 2 t X X的1.5倍。由NGC-TI 3 C 2 T X制成的钠离子和锂离子电池都显示出高循环稳定性。理论计算还验证了NGC-TI 3 C 2 O 2系统中电池容量的显着改善,这归因于NGC边缘状态下工作离子的附加吸附。这项工作是一种创新的方式,可以合成新的范德华异质结构,并提供了一条新的途径,以显着提高电化学性能。
摘要:电气接触材料越来越广泛地使用,但是现有的电动接触润滑剂仍然有很大的改进空间,例如抗衣性能和润滑寿命。由于出色的电气和润滑性能,石墨烯在润滑滑动电触点界面方面具有巨大的潜力,但缺乏相关的研究。一些研究人员研究了石墨烯在超低电流下涂有金色/锡涂层摩擦对之间的润滑性能。然而,尚未报道石墨烯在更广泛使用的电气接触材料上的润滑性能,例如铜及其合金在较大,更常用的电流或电压条件下。在本文中,我们研究了铜中石墨烯及其合金在常规参数下滑动电触点界面的润滑性能,这是通过四个方面探索的:不同的基板 - copper和brass,不同的测试方法,不同的测试方法 - 恒定伏特和恒定的电流和恒定电流,不同的正常负载和耐用性测试。实验表明,在上述测试方法和参数下,石墨烯可以显着减少黄铜和铜的摩擦和磨损,同时具有低接触电阻。我们的工作有望为电接触材料提供一种新的润滑剂,并有助于丰富石墨烯的摩擦学理论。关键字:石墨烯;滑动电触点;铜;减少摩擦;反衣低接触电阻
摘要:维持基于硅的阳极的物理完整性,该阳极受到骑自行车期间严重变化造成的损害,这是其实际应用的重中之重。通过将纳米座粉与硅片与锂离子电池(LIBS)制造阳极(libs)的阳极(LIBS)的阳极(LIBS)混合,从而显着改善了基于硅粉的阳极的性能。纳米 - 膜粘附在硅片的表面上,并分布在薄片之间的粘合剂中。借助丰富的反应性表面连锁官能团和暴露的纳米原子悬挂键,促进了一致且坚固的固体电解质相(SEI),从而促进了硅片和阳极的物理完整性的增强。因此,电池的高速放电能力和循环寿命得到了改善。sem,拉曼光谱和XRD检查阳极的结构和形态。电化学性能在200个周期后评估了近75%的能力保留,在4 mA/cm 2的测试电流下,最终的特异能力超过1000 mAh/g。这归因于通过在阳极中将纳米座和硅片整合到纳米座中实现的固体电解质相(SEI)结构的稳定性,从而实现了增强的循环稳定性和快速的电荷 - 电荷 - 递送性能。这项研究的结果提出了一种有效的策略,即通过在基于硅 - 弗拉克的阳极中添加纳米座量来实现高循环表现。
由于地球上的氧化条件,地球上的所有有机物最终都会转化为生物质、二氧化碳和水。厌氧消化会产生微生物生物质,这是一种营养丰富的固体残留物,可用作肥料、液体消化物和富含甲烷的沼气。厌氧消化提供了一种分流器,通过该分流器可以从部分有机物中获取能量,从而将其完全氧化为二氧化碳和水。甲烷可用于当地燃烧或注入国家天然气管网。厌氧消化产生的生物能源是来自任何源自生物质而非化石来源的燃料的能量。这与化石能源形成对比,化石能源是煤炭、天然气和衍生气、原油、石油产品和不可再生废物等不可再生能源的统称。使用化石燃料的问题在于,它们的使用实际上会将化石二氧化碳排放到大气中,从而加剧温室效应和全球变暖。法国环境与能源管理局 (ADEME) 已列出 2022 年法国将有超过 1175 个厌氧消化装置 [1],2023 年将有大约 3385 个厌氧消化装置 [2]。已制定了四种情景,以减少 2030 年和 2050 年的能源消耗以及二氧化碳排放量(脱碳)。第一种情景是到 2030 年法国产生最低能源需求的情景,为 1.39×10 15 Wh [3]。Wh 是在一定电压 (V) 和一定电流下产生的电量