在碳捕获,利用率和存储(CCUS)价值链中,二氧化碳(CO 2)近海地质存储的安全性和风险评估需要评估可能的意外潜艇CO 2泄漏的后果,包括释放高流量和很长的持续时间的释放。基于特定子模型的整合,开发了一种用于估计浅水中海底井喷影响的创新程序。用于井喷仿真的模型用于预测源项的特征。海底羽流的命运。最后,模拟了表面气体的大气分散体,以估计损伤距离。该方法在一组案例研究中的应用证明,在极高的水中,对于CO 2,气体云在空气中分散的阈值距离可能高于天然气。但是,当考虑更高的水深度时,CO 2向大气中的释放会因在水柱中的CO 2的溶解而大大减弱。
值得注意的是,深海贻贝中的甲烷营养细菌 - 钥匙共生体 - 在暴露的浅水贻贝中占主导地位。这种转移与与免疫反应和内吞作用有关的基因表达的变化相关,突出了贻贝及其共生体之间的协同关系。
摘要:使用 42 个系泊设备的温度和速度测量值来研究非线性内孔在穿过加利福尼亚中部内陆架时沿岸的变化。系泊设备于 2017 年 9 月至 10 月部署在 Point Sal 岬角近海。区域覆盖范围为 ; 沿岸 30 公里和 ; 沿岸 15 公里,跨越 9-100 米水深。除了调节区域分层的潮下过程外,内孔还产生了复杂的时空分层变异模式。在 50 米等深线处,内孔沿岸连续,长度约为数十公里,但锋面连续性的长度尺度在 25 米等深线处减小到 O(1 公里)。发现深度平均、带通滤波(从 3 分钟到 16 小时)的内部钻孔动能 (KE IB ) 沿钻孔前沿是不均匀的,即使是沿岸连续钻孔也是如此。沿钻孔 KE IB 变化的模式因每个钻孔而异,但 2 周平均值表明 KE IB 在 Sal 点附近通常最强。钻孔前方的分层影响钻孔的振幅和沿岸演变。数据表明,沿岸分层梯度可能导致钻孔在不同的沿岸位置以不同的方式演变。观察到三种潜在的钻孔命运:1) 钻孔完整地过渡到 9 米等深线,2) 钻孔被更快的后续钻孔超越,导致钻孔合并事件,以及 3) 当上游跃层接近或低于中间深度时,钻孔消失。每个系泊处每小时的分层图和连续钻孔的估计位置表明,单个内部钻孔可显著影响后续钻孔的波导。
摘要 — 水下回声测深仪是水面和水下舰艇声纳套件不可或缺的一部分。这些系统通过提供船体龙骨和海底之间的实时距离来确保舰队的安全作业。本文我们报告了一种用于舰队舰艇的具有出色声学参数的浅水回声测深仪的设计和开发。原型回声测深仪的峰值发射电压响应 (TVR) 为 170 dB,接收电压灵敏度 (RVS) 为 –187 dBV/µPa,电阻抗为 193 Ω。此外,这种声学换能器的设计具有通过控制传感器几何形状来调整工作频率的灵活性。这种灵活性确保了对工作频率的控制和根据要求进行定制。关键词:浅水回声测深仪、PZT、单波束、声学匹配层、水文
摘要:浅水测深是土木工程、港口监测和军事行动等各个领域关注的重点课题。本研究介绍了几种使用集成了光探测和测距 (LiDAR) 和多波束回声测深仪 (MBES) 等先进创新传感器的海上无人系统 (MUS) 评估浅水测深的方法。此外,本研究全面描述了同一地理区域内的卫星测深 (SDB) 技术。详细介绍了每种技术的实施和所得数据,然后对其准确性、精确度、快速性和运行效率进行了分析比较。在 MUS 调查之前,使用传统方法进行的水深参考调查以及所有方法之间的交叉比较来评估方法的准确性和精确度。在对每一种调查方法进行评估时,都会进行全面的评估,解释每种方法的优点和局限性,从而使读者能够全面了解这些方法的有效性和适用性。该实验是使用海上无人系统 23 进行机器人实验和原型设计(REPMUS23)多国演习的一部分,而该演习又是快速环境评估 (REA) 实验的一部分。
第3卷考虑了非LWR代码的开发,用于严重事故进展,源术语和后果分析。此功能涉及计算裂变产品库存,其运输,由此产生的来源项,大气分散和剂量后果。为此目的的主要计算机代码是量表(裂变产品清单),Melcor(运输和源术语)和MACC(分散和剂量)。这些代码需要一些新的建模。例如,较小的位点边界距离并释放,可以提高近场大气传输的重要性以及相对于在大型LWR的应用而被认为的特定放射性核素。除了这些考虑之外,员工的优先级是在几种代表性非LWR设计的全植物模型的开发和应用中。
摘要 对新西兰北阿什伯顿河清澈浅水砾石河段的数字摄影测量测量所获得的数字高程模型 (DEM) 质量进行了评估。使用自动校正程序处理与水下地形相关的点误差,该程序基于对空气-水界面折射的校正。还考虑了收集参数变化对 DEM 质量的影响。使用独立数据集评估水下地形 DEM 的准确度和精度。结果表明,如果将数字摄影测量与图像分析技术结合使用,可以成功用于提取砾石河床的高分辨率 DEM,但水下地形表示的质量在很大程度上取决于图像采集时的水深。有人提出,数字摄影测量表面与“实际”河床表面(由地面测量确定)之间的差异将在一定程度上反映定义砾石覆盖表面真实高程的问题。数字摄影测量测量通常会看到砾石鹅卵石的顶部,而手持测量人员则倾向于记录石头之间的高程。还讨论了误差的命名法,并得出结论,所采用的表面质量测量应与 DEM 的应用一致。
摘要:浅水测深是土木工程、港口监测和军事行动等各个领域的重要研究课题。本研究介绍了几种使用海上无人系统 (MUS) 评估浅水测深的方法,该系统集成了先进和创新的传感器,例如光探测和测距 (LiDAR) 和多波束回声测深仪 (MBES)。此外,本研究全面描述了同一地理区域内的卫星测深 (SDB) 技术。每种技术都从其实施和结果数据方面进行了全面概述,然后对其准确性、精确度、快速性和操作效率进行了分析比较。在 MUS 调查之前,使用传统方法进行的水深参考调查以及所有方法之间的交叉比较来评估方法的准确性和精确度。在对调查方法的每次评估中,都会进行全面的评估,解释每种方法的优点和局限性,从而使读者能够全面了解这些方法的有效性和适用性。该实验是作为“使用海上无人系统 23 的机器人实验和原型设计”(REPMUS23)多国演习的一部分进行的,该演习是快速环境评估 (REA) 实验的一部分。
1 意大利墨西拿,Contrada Porticatello, 29, 98167,综合海洋生态学系,Anton Dohrn 动物站,西西里海洋中心; erika.arcadi@szn.it (EA); rosario.calogero@szn.it (RC); franco.andaloro@szn.it (FA) 2 意大利法诺海洋中心、Stazione Zoologica Anton Dohrn、Viale Adriatico 1-N、61032 法诺、海洋生物技术部; emanuela.buschi@szn.it 3 海洋生物资源研究基础设施部,Stazione Zoologica Anton Dohrn,Fano Marine Centre,Viale Adriatico 1-N,61032 Fano,意大利 4 海洋生物资源研究基础设施部,Stazione Zoologica Anton Dohrn,Villa Comunale,80121 Naples,意大利; pasquale.deluca@szn.it 5 国家海洋和实验地球物理研究所 - OGS Borgo Grotta Gigante 42/C, 34010 Sgonico,意大利; vesposito@inogs.it 6 海洋生物生物学和进化部,Stazione Zoologica Anton Dohrn,西西里海洋中心,Via dei Mille 46, 98057 Milazzo,意大利; teresa.romeo@szn.it 7 国家环境保护与研究研究所,Via dei Mille 46, 98057 Milazzo,意大利 8 马尔凯理工大学生命与环境科学系,Via Brecce Bianche, 60131 Ancona,意大利; r.danovaro@univpm.it 9 国家生物多样性未来中心(NBFC),90133 巴勒莫,意大利 * 通讯地址:eugenio.rastelli@szn.it (ER); michael.tangherlini@szn.it (MT) † 这些作者对这项工作做出了同等贡献。