在电子工程的工业和研究领域,距离信息被视为关键测量之一 [1]。为了获得准确可靠的距离数据,具有测距能力的设备现在广泛应用于军事和工业领域,包括红外 (IR) 和超声波测距仪。然而,使用这些传统的测距系统会出现许多准确性问题,因为它们对周围环境非常敏感,特别是当暴露于非结构化和不可预测的物理环境(灰尘、温度、烟雾)或结构混乱的环境(瓦砾、碎片等)时 [2]。因此,提出了一种更可靠的测距方法。激光二极管发射高度定向的光束,具有体积小、亮度高、颜色纯、能量密度高和效率高的优点 [3][4]。最重要的是,激光测距系统不易受到环境影响,因为可以通过测量反射和散射回波信号的时间间隔、频率变化和光束方向来获得目标的距离和方向。使用激光测距方法的测量误差仅为其他光学测距仪的五分之一到百分之一 [5]。相位激光测距法因其高精度而受到广泛欢迎,然而其应用问题也不容忽视,观测到在频率漂移、噪声、大气折射等影响下,可能由于相位折叠或相位模糊而出现接近零步进误差[6]。Barreto 等人采用了三角测量激光测距法,但其灵敏度要求严格且功耗高[7]。本文研制了一种微型、便携、低功耗的激光测距系统,具有两种测量模式:高精度模式和长距离模式。本文研制了一种微型便携式激光测距系统,具有两种测量模式:高精度模式和长距离模式。该系统基于 VL53L0X 飞行时间激光测距传感器和 STM32F407 微控制器 [8]。
LiDAR是在1960年Theodore Maiman发明红宝石激光器之后才被广泛认可的,从技术革新来看,LiDAR经历了四个阶段。1960年,Theodore Maiman和他的同事在休斯研究实验室将高功率闪光灯照射在红宝石棒上,触发了一束相干光:第一束激光器。由于激光具有亮度好、方向性好、抗干扰等特点,激光技术被广泛应用于测距。与一般的测量方法相比,它具有精度高、分辨率高、体积小、使用方便、全天候等优点,在对地观测、环境监测、侦察等领域发挥着重要作用。同其他技术一样,激光也引起了军方的重视,很快美国军方就开始了军用激光装置的研究,第一台军用激光测距仪在1961年通过了军方试验,很快就投入了实用化。1971年,美国军方首创了世界上第一台红宝石激光测距系统:AN/GVS-3,这台第一代测距仪由光电倍增管探测器和红色外宝石光激励器组成,由于存在体积大、重量重、功耗大等缺点,很快就被第二代测距系统所取代,该测距系统采用近红外钕激光器(主要是Nd:YAG激光器)和PIN光电二极管或雪崩光电二极管,体积更小,功耗更低。随着这项技术的日趋成熟,随着20世纪70年代YAG激光技术的成熟,应用于长、中、短程激光测距雷达已成为必然趋势,1977年美国研制成功第一台手持式小型激光测距仪。 Nd:YAG激光测距仪:AN/GVS-5型,特点:尺寸与标准7-50军用望远镜相当,总重量只有2kg,适合手持使用,20世纪70年代末到80年代中期,激光测距仪成为军用激光市场上最大的采购项目[10]。起初激光测距主要用于军事和科研,在工业仪器中很少见,因为激光测距传感器太贵,一般在几千美元,高昂的价格一直是阻碍其广泛使用的主要原因。然而,由于技术的重大进步,价格已降至几百美元,使得它有可能成为一种具有成本效益的测量仪器。
由于室内环境中存在许多反射,基于 RSSI 的测距本质上是不准确的。通过结合基于相位的距离估计协议和先进的信号处理,imec 测距技术可以准确地将视线分量与多径分离。结果是一个具有亚米级精度的强大测距系统。与测向(也称为 AoA,到达角)不同,imec 距离测量仅使用两侧的单个天线进行。通过将多个天线与跟踪相结合,距离测量的精度甚至可以远远优于 10 厘米。它还可以与 AoA 技术相结合,为此,imec 的多径消除技术也提供了卓越的性能。
Imec 的 snapscan VNIR 测距系统是高光谱成像应用研究的重大突破。只需几百毫秒,即可创建具有无可比拟的信噪比和空间与光谱分辨率的高质量超立方体数据集。snapscan 演示套件可实现最高质量的应用研究,同时仍保持用户友好性。它集成了所需的所有关键组件:光谱图像传感器、相机、光学元件、压电扫描、主动冷却系统、照明、三脚架支架和 HSImager:imec 研究团队开发的最先进的高光谱成像软件。
在海军中,无线电探测和测距系统(雷达)是探测、跟踪和有时区分友军和敌军目标的主要传感器。它们对于创建周围环境的作战图像和态势感知至关重要。雷达的性能会显著受到系统部署环境的影响。在某些大气条件下,折射效应会导致电磁管道、雷达漏洞、跳过区和/或阴影区增大。这些现象既有战术上的优势,也有劣势。例如,优势在于管道可以扩大探测范围,从而提供更多的反应时间来对抗来袭的敌军目标。劣势在于敌军目标可能无法在通常与发达管道共存的雷达漏洞和跳过区中被发现。
在海军中,无线电探测和测距系统(雷达)是探测、跟踪和有时区分友军和敌军目标的主要传感器。它们对于创建周围环境的作战图像和态势感知至关重要。雷达的性能会显著受到系统部署环境的影响。在某些大气条件下,折射效应会导致电磁管道、雷达漏洞、跳过区和/或阴影区增大。这些现象既有战术上的优势,也有劣势。例如,优势在于管道可以扩大探测范围,从而提供更多的反应时间来对抗来袭的敌军目标。劣势在于敌军目标可能无法在通常与发达管道共存的雷达漏洞和跳过区中被发现。
数据记录接收器、惯性导航系统 (INS)、定位飞行轨迹系统 (GPS)、摄像机、飞行计划和管理系统以及地面参考站 GPS 和数据处理站。测距系统、GPS 和 INS 的集成和相互配合允许获得足够密集的“点云”(具有已知坐标 X、Y、Z 的空间点),以获得代表地形表面及其覆盖物的三维空间。使用摄像机记录扫描区域可以在激光雷达数据的后处理过程中简化“点云”过滤过程。为了消除系统误差,建议使用坐标 X、Y、Z 的校正值,这些校正值是使用具有至少三倍更精确空间坐标的控制点计算的,例如:运动场表面(Tarek,2002 年)。
在海军中,无线电探测和测距系统(雷达)是探测、跟踪和有时对友军和敌军目标进行分类的主要传感器。它们对于创建周围环境和态势感知的作战画面至关重要。雷达的性能可能受到系统部署环境的显著影响。在某些大气条件下,折射效应会导致电磁管道、雷达漏洞、跳过区和/或阴影区增加。这些现象可能导致战术优势和劣势。例如,一个优点是管道可以扩大探测范围,从而提供更多的响应时间来对抗来袭的敌方目标。一个缺点是敌方目标可能在通常与发达管道共存的雷达漏洞和跳过区中未被发现。
在海军中,无线电探测和测距系统(雷达)是探测、跟踪和有时区分友军和敌军目标的主要传感器。它们对于创建周围环境的作战图像和态势感知至关重要。雷达的性能会显著受到系统部署环境的影响。在某些大气条件下,折射效应会导致电磁管道、雷达漏洞、跳过区和/或阴影区增大。这些现象既有战术上的优势,也有劣势。例如,优势在于管道可以扩大探测范围,从而提供更多的反应时间来对抗来袭的敌军目标。劣势在于敌军目标可能无法在通常与发达管道共存的雷达漏洞和跳过区中被发现。
在海军中,无线电探测和测距系统(雷达)是探测、跟踪和有时区分友军和敌军目标的主要传感器。它们对于创建周围环境的作战图像和态势感知至关重要。雷达的性能会显著受到系统部署环境的影响。在某些大气条件下,折射效应会导致电磁管道、雷达漏洞、跳过区和/或阴影区增大。这些现象既有战术上的优势,也有劣势。例如,优势在于管道可以扩大探测范围,从而提供更多的反应时间来对抗来袭的敌军目标。劣势在于敌军目标可能无法在通常与发达管道共存的雷达漏洞和跳过区中被发现。