R160 - SUNKKO T-685 电池和电池组测试仪使用说明亲爱的客户,感谢您的信任并购买本产品。本使用说明书为产品的一部分。它包含有关将产品投入运行和操作的重要说明。如果您将产品传递给其他人,请确保也向他们提供这些说明。请保留本手册,以便随时再次阅读!本产品是顺应电池行业的发展而开发的针对低阻大容量锂电池的检测及高速分选。内阻的单位一般为mΩ。内阻较大的电池在充放电过程中,内部功耗会很大,而且发热严重,会造成锂离子电池老化衰减加速,同时也限制了高倍率充放电的使用。内阻越低,锂离子电池的寿命越长,倍率性能越好。通过测量内阻可以检查出好电池、坏电池以及相同的电池。在组装电池组时,需要对电芯容量、内阻、电压进行检查和匹配。电池组的性能取决于最差的电池单元。概述:1、本仪器采用意法半导体公司进口高性能单晶微电脑芯片,结合美国“Microchip”高分辨率A/D转换芯片作为测量控制核心,以锁相环合成的精密1000Hz交流正电流作为测量信号源,施加于被测元件。产生的微弱压降信号经高精度运算放大器处理,再由智能数字滤波器分析出相应的内阻值。最后显示在一个大的点阵LCD显示屏上。 2、该仪器优点:准确度高、自动选档、自动极性识别、测量速度快、测量范围广。 3.该装置可同时测量电池(蓄电池)的电压和内阻。采用四线开尔文型测试探头,可以更好地避免测量接触电阻和导体电阻的干扰,具有良好的抗外界干扰性能,从而得到更准确的测量结果。 4.仪器具有与PC机串行通讯功能,可利用PC机对多个测量结果进行数值分析。 5.本仪器适用于各类电池交流内阻(0—100V)的精确测量,特别适合大容量动力电池的低内阻测量。 6、该设备适用于工程中的电池研发、生产及质量检测。产品特点:采用18位高分辨率AD转换芯片,确保测量准确;双5位显示,最高测量解析度值为0.1μΩ/0.1mv,精细度高;自动多单位切换,覆盖广泛的测量需求 自动极性判断及显示,无需区分电池极性 平衡开尔文四线测量探头输入,高抗干扰结构 1KHZ交流电流测量方式,精度高
非人灵长类动物神经活动动态的闭环光遗传学控制 B. Zaaimi 1,2,& 、M. Turnbull 1,& 、A. Hazra 1 、Y. Wang 3 、C. Gandara 1 、F. McLeod 1 、EE McDermott 1 、E. Escobedo-Cousin 4 、A. Shah Idil 5 、RG Bailey 4 、S. Tardio 4 、A. Patel 4 、N. Ponon 4 、J. Gausden 4 、D. Walsh 1 、F. Hutchings 3 、M. Kaiser 3,6,7,8 、MO Cunningham 9 、GJ Clowry 1 、FEN LeBeau 1 、TG Constandinou 10 、SN Baker 1 、N. Donaldson 5 、P. Degenaar 4、A. O'Neill 4、AJ Trevelyan 1 和 A. Jackson 1,* 1 纽卡斯尔大学生物科学研究所,纽卡斯尔 NE2 4HH,英国。2 当前地址:阿斯顿大学生命与健康科学学院,伯明翰 B4 7ET,英国。3 纽卡斯尔大学计算学院,纽卡斯尔 NE4 5TG,英国。4 纽卡斯尔大学工程学院,纽卡斯尔 NE1 7RU,英国。5 伦敦大学学院医学物理与生物医学工程系,伦敦 WC1E 6BT,英国。6 NIHR,诺丁汉生物医学研究中心,诺丁汉大学医学院,NG7 2UH,英国。7 彼得·曼斯菲尔德爵士影像中心,诺丁汉大学医学院,NG7 2UH,英国。8 上海交通大学医学院,上海,中国。 9 爱尔兰都柏林圣三一学院医学院,都柏林 2。10 英国帝国理工学院电气与电子工程系,伦敦 SW7 2AZ,英国。 *通讯作者,andrew.jackson@ncl.ac.uk & 这些作者贡献相同。电神经刺激可有效治疗神经系统疾病,但相关的记录伪影通常将其应用限制在开环刺激。然而,通过将并发电记录和光遗传学配对可以实现对大脑活动的实时和连续闭环控制。在这里,我们表明,使用兴奋性视蛋白的闭环光遗传刺激能够精确操纵转基因小鼠和麻醉非人类灵长类动物脑切片中的神经动力学。该方法在静止组织中产生振荡,增强或抑制活动组织中的内源性模式,并调节由惊厥剂 4-氨基吡啶引起的癫痫样爆发。光学刺激相位依赖效应的非线性模型再现了与癫痫发作振荡相关的局部场电位周期调制,癫痫发作相空间轨迹的变异性和熵的系统性变化证明了这一点,这与癫痫发作持续时间和强度的变化相关。我们还表明,可以使用结合发光二极管的皮质内光极来实现闭环光遗传神经刺激。闭环光遗传学方法可能具有转化治疗应用。许多神经系统疾病会导致网络动态改变,特征是脑区内和脑区之间振荡同步性异常低或高 1 。神经调节疗法,例如深部脑刺激 (DBS),通常会提供“开环”电刺激序列,试图破坏病理模式并将脑活动保持在一定功能状态范围内。然而,从控制理论的角度来看,开环方法通常不如包含基于系统实时状态的反馈的闭环控制 2 。因此,如果通过持续的电生理测量控制神经调节疗法,可能会更有效 3,4 ,例如增强有益的振荡或破坏病理性脑状态,如癫痫发作。不幸的是,闭环神经刺激的许多潜在应用受到与电刺激相关的大量伪影的阻碍,尤其是在监测和调节相同的局部神经元群时。这通常会将控制策略限制为简单的决定,即打开或关闭原本连续的刺激序列 5,6 。由于用于光遗传学的光刺激可以在不妨碍同时进行电记录的情况下传递,因此可以通过脑信号实时连续调制光刺激,从而实现与局部网络的真正闭环交互。尽管有相当大的理论动机 7 ,但迄今为止,闭环光遗传刺激的实验演示仅限于体外制剂 8 和啮齿动物正常脑节律的体内实验 9-12 。在这里,我们的目标是通过展示在非人类灵长类动物中闭环操纵网络动力学的可行性并检查其对病理性癫痫样活动的影响,将这项技术推进到人类的治疗应用。此外,我们比较了通过外部光源传递的光刺激和包含封装这通常会将控制策略限制为简单的打开或关闭决策,否则就会产生连续的刺激序列 5,6 。由于用于光遗传学的光刺激可以在不妨碍同时进行电记录的情况下传送,因此可以通过脑信号实时连续调制它,从而实现与局部网络的真正闭环交互。尽管有相当大的理论动机 7 ,但闭环光遗传刺激的实验演示迄今为止仅限于体外制剂 8 和啮齿动物正常脑节律的体内实验 9-12 。在这里,我们旨在通过展示在非人类灵长类动物中闭环操纵网络动力学的可行性并检查其对病理性癫痫样活动的影响,将这项技术推进到人类的治疗应用。此外,我们将通过外部光源传送的光刺激与包含封装这通常会将控制策略限制为简单的打开或关闭决策,否则就会产生连续的刺激序列 5,6 。由于用于光遗传学的光刺激可以在不妨碍同时进行电记录的情况下传送,因此可以通过脑信号实时连续调制它,从而实现与局部网络的真正闭环交互。尽管有相当大的理论动机 7 ,但闭环光遗传刺激的实验演示迄今为止仅限于体外制剂 8 和啮齿动物正常脑节律的体内实验 9-12 。在这里,我们旨在通过展示在非人类灵长类动物中闭环操纵网络动力学的可行性并检查其对病理性癫痫样活动的影响,将这项技术推进到人类的治疗应用。此外,我们将通过外部光源传送的光刺激与包含封装