摘要:河流生态系统已经适应了整个季节的自然放电变化。14然而,证据表明气候变化已经影响了15河流量季节性的幅度,仅限于本地研究,主要集中于平均或极端16个流量的变化。这项研究介绍了将分配熵用作可靠的措施来评估整个季节的17流量不均匀性,从而实现了全球分析。我们发现,在18个长期河流测量站中,约有21%的季节性流量分布发生了重大变化,但其中三分之二与年平均排放趋势无关。通过将20个数据驱动的径流重建与最先进的水文模拟相结合,我们确定了北部高纬度地区(高于50°N)的河流流量季节性的21个可分离弱化,这是一种与人为气候强迫直接相关的现象。23
赞比西河管理局(管理局)于 1987 年 10 月 1 日根据赞比亚和津巴布韦议会的平行立法成立为法人团体,此前中非电力公司根据《赞比西河管理局法案》(分别为第 467 章和第 20:23 章)进行了重组。管理局由赞比亚共和国和津巴布韦共和国政府以相等比例共同拥有,并负责管理卡里巴综合体和赞比西河河段(从赞比亚的卡宗古拉到卢安瓜,从津巴布韦的卡宗古拉到卡尼耶姆巴),该河段是两个缔约国之间的共同边界的一部分。 2.0 背景 该机构拥有经批准的 183 名员工,在两个 (2) 个不同的国家(即赞比亚和津巴布韦)(“缔约国”)和三个 (3) 个地点(即赞比亚的卢萨卡、津巴布韦的卡里巴和哈拉雷)开展业务,此外还设有十三个 (13) 个遥测测量站。
摘要:在西方世界,环境空气中的 SO 2 浓度已降至较低水平,但一些排放源(例如商船)和一些地区(例如低收入国家)仍然排放大量 SO 2 。在这些地方,SO 2 监测至关重要。然而,低收入国家无法获得昂贵的参考仪器。低成本气体传感器可能是一种替代方案,但目前尚不清楚这种测量的可靠性如何。为了评估低成本替代方案的性能,对同一 SO 2 气体传感器进行了三种不同的校准方法:(1)在古巴热带气候下进行的低成本校准;(2)在比利时进行的高端校准;(3)在比利时空气质量测量站进行的现场校准。前两种方法显示出相似的趋势,表明可以使用低成本方法校准气体传感器。现场校准因 SO 2 浓度低而受到阻碍。对于古巴西恩富戈斯的监测活动,通过低成本方法校准的低成本 SO 2 传感器似乎足够可靠。传感器的可靠性随着 SO 2 浓度的增加而增加,因此它可以在古巴而不是比利时使用。
在完成这项工作时,我想感谢我在苏黎世联邦理工学院的导师 Martin Detert 博士,感谢他指导我完成机载图像测速这一主题,并在整个论文过程中给予我帮助。我想特别感谢我在米兰理工大学的导师 Livio Pinto 教授,感谢他对该主题的关注以及在我工作期间(尤其是在米兰的最后几个月)对我的支持。我要感谢苏黎世联邦理工学院水力学、水文学和冰川学 (VAW) 实验室负责人 Robert Boes 教授接受我作为 VAW 部门的访问学生。我要感谢 Fudaa-LSPIV 的开发人员 Magali Jodeau、Jérôme Le Coz、Alexander Hauet 以及 RIVeR 的开发人员 Antoine Patalano 对我的工作感兴趣并给予建设性反馈。还要感谢 Jörg Hammer 和瑞士联邦环境局 (FOEN) 提供在苏黎世 Unterhard 测量站获取的利马特河数据。这些数据对于比较我的 AIV 结果至关重要。最后,我要感谢 Francesco Avanzi,感谢他支持我决定搬到苏黎世来发展我的论文,还要感谢我所有的朋友,特别是 Daniele Moncecchi,我在那里和他共度了时光。
摘要。水 - 全球评估和预后(WATERGAP)是一种建模方法,用于量化自1996年以来一直服务于科学和社会的地球所有土地地区的水源和用水。在本文中,描述了最新模型版本v2.2E的重新构件,新算法和新数据,以及对模拟的用水量,溪流流量和针对观察数据的Terres-Treres-Treres-Treres-Treres-tres-aftres-trenes-treres-agion-trenes-trenes trenes trenes-avile评估。Water-GAP v2.2E改善了内陆水槽的处理,现在不仅在模拟归化条件时不仅排除了大型,而且不包括小型的人制造物。更新了储层和非灌溉用水数据。此外,对1509个测量站的流动观测值的更新和扩展数据集进行了校准。修改量导致估计的全球可再生水资源的减少很小。现在可以使用规定的水库和其他条件开始模型,从而促进数据同化以及近实时的纪念和预测模拟。对于特定的应用,该模型可以考虑冰川模型的输出,并具有上升CO 2浓度对蒸发的影响,或计算河流中的水温。在论文中,描述了公开可用的标准模型输出,并与ISIMIP3框架中模型设置的描述一起提供了模型版本的警告。
Metzger 等人描述了一个数据处理框架,该框架通过 NEON 的涡流协方差塔和机载测量数据集中的临时示例进行了说明。总体而言,这一技术概念似乎对简化来自不同测量站的特定数据处理步骤的自动化具有潜在价值,但在当前版本的论文中很难认识到更广泛的科学价值。我必须承认,我很失望地发现这些工具的描述支离破碎,科学结果和结论的支持力度很弱。整个分析非常具有描述性,在许多情况下对可能性产生了误导。除了未来的潜在应用之外,几乎没有努力去综合使用该工具可以学到什么。最重要的是,这篇论文没有指定科学目标,甚至没有涉及建模的范围,而这正是该期刊读者的主要兴趣所在。这份手稿似乎需要做很多工作才能使结果和讨论对科学界有用,但在进行重大澄清后,可能值得重新考虑。另一位审稿人已经提供了有关如何实现这一目标的详细指导,我同意他/她的观点。我还有其他顾虑,希望可以在修订中得到解决。
场地特征描述和环境监测(包括但不限于特征描述和监测设备的选址、建造、改造、操作、拆除和移除或以其他方式适当关闭(例如井),以及小型实验室建筑的选址、建造和相关操作或现有建筑中用于样品分析的房间的翻新)。此类活动将根据适用要求进行设计,并使用最佳管理实践来限制由此产生的任何地面扰动的潜在影响。涵盖的活动包括但不限于 CERCLA 和 RCRA 下的场地特征描述和环境监测。(此类活动不包括在水环境中开展的活动。有关此类活动,请参阅本附录 B3.16。)具体活动包括但不限于:(a) 地质、地球物理(如重力、磁力、电、地震、雷达和温度梯度)、地球化学和工程勘测和测绘,以及测量标记的建立。地震技术不包括大规模反射或折射测试;(b) 安装和操作现场仪器(如流量测量站或流量测量装置、遥测系统、地球化学监测工具和地球物理勘探工具);(c) 钻井以采样或监测地下水或包气带(非饱和带)、测井和在井中安装水位记录装置;(d) 含水层和地下水库响应测试;(e) 安装和操作环境空气监测设备; (f) 水、土壤、岩石或污染物的采样和特性分析(例如使用卡车或移动设备进行钻探,以及钻孔的改造、使用和封堵); (g) 水废水、空气排放物或固体废物流的采样和特性分析; (h) 气象塔的安装和操作及相关活动(例如潜在风能资源的评估); (i) 动植物采样;以及 (j) 按照 36 CFR 第 800 部分和 43 CFR 第 7 部分进行考古、历史和文化资源识别。
沙特能源场景的动态转变,改革和重组正在迅速发展,因为昨天的不确定性是当今的常态。详细的分析和仔细的实施为对能源部门的未来安装更大的信心铺平了道路。王国继续在可再生能源,氢和圆形碳经济方面兑现其承诺。截至2024年,王国在不同的开发阶段推出了23吉瓦的可再生能源项目,其中2.8 GW已经运行。此外,雄心勃勃的计划要求招标额外的20吉瓦增量,在2024年和2025年招标,在接下来的几年中,可再生能源份额将等效于100-130 GW(受电力需求)到2030年,可再生能源能力的可再生能源能力。此类计划的支持是可再生能源的最大区域映射,该图将涉及在整个王国安装测量站。这种自下而上的方法帮助王国实现了其可再生项目的最低水平能源成本,从而增强了其能源可负担性和可持续性。此外,能量生态系统正在启动一个新的储能目标,到2030年的储能储存量40 GWH,以增强电网稳定性并更好地利用可再生能源。此外,王国正在扩大主气系统。到2028年,该项目将使供应能力增加40%以上。将在现有4400公里的4400公里天然气网络中增加4000公里的新天然气管道,以提高气体分布能力,从而伸出6个工业城市和地区。同样,随着王国正朝着天然气产量的显着增量发展,以满足多个部门的当地需求不断增长。此外,沙特阿拉伯认为核能是沙特核能计划的战略选择。该计划旨在向王国引入2.2-3.3吉瓦的核能,同时还探索小型模块化反应堆及其多功能应用的潜力。
场地特性描述和环境监测(包括但不限于特性描述和监测设备的选址、建造、改造、操作、拆除和移除或以其他方式适当关闭(例如关闭井),以及小型实验室建筑的选址、建造和相关操作或现有建筑中用于样品分析的房间的翻新)。此类活动将按照适用要求进行设计,并使用最佳管理实践来限制由此产生的地面扰动的潜在影响。涵盖的活动包括但不限于 CERCLA 和 RCRA 下的场地特性描述和环境监测。(这类行动不包括水环境中的活动。有关此类活动,请参阅本附录的 B3.16。)具体活动包括但不限于:(a)地质、地球物理(如重力、磁力、电学、地震、雷达和温度梯度)、地球化学和工程勘测和测绘,以及测量标记的建立。地震技术不包括大规模反射或折射测试; (b) 安装和运行现场仪器(如流量测量站或流量测量装置、遥测系统、地球化学监测工具和地球物理勘探工具); (c) 钻井以采样或监测地下水或包气带(非饱和带)、测井以及在井中安装水位记录装置; (d) 含水层和地下水库响应测试; (e) 安装和运行环境空气监测设备; (f) 水、土壤、岩石或污染物的采样和特性分析(如使用卡车或移动设备钻井,以及改造、使用和堵塞钻孔); (g) 水废水、空气排放物或固体废物流的采样和特性分析; (h) 安装和运行气象塔及相关活动(如评估潜在风能资源); (i) 动植物采样;以及 (j) 符合 36 CFR 第 800 部分和 43 CFR 第 7 部分的考古、历史和文化资源识别。B5.14 热电联产或热电联产系统
(美国陆军工程兵团,2021 年)。校准程序通过自动校准每个子流域的参数来执行。如果子流域在出口处有洪水计,则单独校准参数。如果没有,则同时校准多个子流域。校准从上游到下游逐步进行。图 7、8 和 9 显示了八个洪水测量站对飓风马修和佛罗伦萨的模拟水文图。总体而言,两个飓风模型都很好地校准了观测到的水文图趋势。根据表 5 所示的性能指标结果,获得的校准精度良好。校准后的参数显示出特定的趋势,可以比较两种飓风的行为。马修模型校准所需的 CN 值高于弗洛伦斯模型,这可能表明前一次事件期间的前期湿度条件 (AMC) 更潮湿。这一观察结果与其他关于伦伯河这些风暴的研究相符(北卡罗来纳州应急管理部门,2018 年;Doll 等人,2020 年),并与 Williams 等人 (2020 年) 的发现一致,他们强调了飓风马修前一个月的大量降雨。此外,据观察,在两次飓风模拟中,大多数校准的 CN 值都在干燥和正常 AMC 之间的估计范围内。这种影响可以归因于流域土壤中的干燥 AMC;然而,这与之前关于飓风马修之前一个潮湿月份的发现相矛盾。另一种解释可以归因于水滞留和积水效应,预计这些效应会减少流域的总径流量。此外,水滞留和积水效应会影响校准的蓄水系数和集水时间,导致校准的蓄水系数和集水时间通常高于最初估计值。伦伯顿洪水站的水文图显示双峰行为,有两个明显的洪水峰值,一个发生在降雨高峰当天,另一个发生在 3 至 4 天后(见图 7)。据推测,第一个峰值对应于子流域对洪水的反应,而第二个峰值是由来自上游部分的延迟流量产生的。上游流域的行程时间值比预期的要大得多,