土壤呼吸(RS)是大气CO 2的最大来源,对近地面风之间的关系,CO 2从土壤表面释放,测量方法对预测未来的大气CO 2浓度至关重要。在这项研究中,风速与土壤CO 2通量之间的关系通过荟萃分析在全球范围内阐明,并进一步探讨了通量测量方法与对照试验的结果一起探索,以阐明测量结果的不确定性。结果表明,近地面风速与土壤CO 2释放呈正相关,而近地表风导致土壤CO 2气体释放增加。风干扰会影响浓度梯度和气体室测量值,而较低计算的土壤CO 2释放了与风泵效应和负压的伯诺利效应的观点相冲突,导致更大的表面气体交换。对数响应比率的结果表明,在广泛使用的气体室方法测量值中,近地表风导致低估为12.19–19.75%。这项研究的结果表明,当前的RS测量值有偏见,并且需要紧急处理近地表风对RS测量的影响,以更准确地评估陆地碳循环并制定气候变化响应策略。
接下来,将进行初步现场测试。在此任务期间,将进行测量以确保该技术适用于检测裂缝和各种城市/工业表面和介质中的污染源,并确定其在绘制污染积聚区域地图方面的潜力。采样和现场测试程序将进行优化,以确保现场测量具有可重复性、准确性和可现场分析性。这将允许开发可在现场部署的方法来精确定位浓度梯度上的污染源,确定污染是局部的还是扩散到某个区域,并提供有关最佳管理措施(例如清扫、吸尘、渗透介质)是否影响了相关污染水平的反馈。还将采用不同的使用场景,可能包括:1. 对码头边清扫和/或吸尘的前后进行评估2. 评估靠近金属表面的区域以评估锌和铜的浸出,以此作为改进模型的一种手段,例如 WinSLAMM 模型(NESDI 项目编号 455:用于量化雨水排放中金属的来源、负荷和缓解行动的海军设施建模工具)3. 测量生物过滤带上方和下方表面的金属污染情况4. 测量飞碟靶场的铅浓度。
自 1960 年代以来,人们使用了各种趋化性测定方法,但这些测定方法都存在很大的局限性。Transwell 测定方法技术简单且应用广泛;将装有细胞的多孔插入物放置在装有引诱剂的孔内,(一旦通过扩散建立起浓度梯度)细胞就会通过微米大小的孔迁移到孔中,通过取出插入物并计数孔中的细胞来量化趋化性。[5] xCEL-Ligence 测定方法提供了一项重大技术进步;当细胞穿过改良的 Boyden 室中的孔时,可以实时测量阻抗变化。[6] 为了解决 Transwell 测定方法的一些局限性,人们引入了替代方法,包括跟踪和监测单个细胞(如 Dunn 室)[7] 以及检测细胞可逆性或细胞趋向性(如琼脂糖下迁移测定方法)。 [8] 最近,人们开发出了微流控系统 [9],该系统能够控制稳定的梯度,[10] 区分不同类型的运动(例如,趋化性、化学运动——无方向性细胞迁移和逃逸性 [11] ),实时追踪单个细胞,[12] 并提高吞吐量 [13]——有时不需要太多依赖专门的设备即可实现。 [14] 虽然微流控方法前景广阔,但它们在生物医学研究中的应用受到了阻碍,因为操作设备所需的技术复杂性、制造和原型制作时间长、经常使用的塑料的生物相容性问题(即聚二甲基硅氧烷、
摘要 众所周知,晶粒细化剂可以调整微观结构并提高增材制造 (AM) 钛合金的机械性能。然而,Ni 添加对 AM 制造的 Ti-6Al-4V 合金的内在机制尚不十分清楚。这限制了它的工业应用。本研究系统地研究了 Ni 添加剂对激光辅助增材制造 (LAAM) 制造的 Ti-6Al-4V 合金的影响。结果表明,Ni 添加对 LAAM 制造的 Ti-6Al-4V 合金的微观结构演变产生三个关键影响。(a) Ni 添加剂显着细化了前 β 晶粒,这是由于凝固范围扩大所致。随着 Ni 添加量从 0 增加到 2.5 wt。%,原β晶粒的长轴长度和长宽比分别从1500 µ m和7减小到97.7 µ m和1.46。(b) Ni添加剂可以明显诱导球状α相的形成,这归因于β相和α相之间增强的浓度梯度。根据终止传质理论,这是球化驱动力。随着Ni添加量从0增加到2.5 wt,α板条的长宽比从4.14降低到2.79。%(c) Ni是一种众所周知的β稳定剂,它可以显著增加β相的体积分数。室温拉伸结果表明,随着 Ni 含量的增加,机械强度增加,伸长率几乎呈线性下降。使用改进的数学模型定量分析了强化机制。从结果可以看出,α 板条相和固溶体对本研究中 LAAM 构建的 Ti-6Al-4V-x Ni 合金的总屈服强度贡献最大。此外,随着 Ni 含量的增加,伸长率降低是由于大量固溶体 Ni 原子导致 β 相的变形能力下降。这些发现可以加速增材制造钛合金的开发。
葡萄糖是哺乳动物细胞的关键代谢底物。血糖是糖原和脂肪生物合成以及各种含糖的大分子的前体,例如糖蛋白,糖脂和核酸。一些组织(例如大脑)需要葡萄糖作为能源和其他组织(例如肌肉)优先将葡萄糖分解为ATP的产生。血糖代谢的第一步是跨质膜的转运。此步骤是由称为葡萄糖转运蛋白的一系列膜载体蛋白(1,2)进行的。令人惊讶的是,不同的蛋白质家族负责葡萄糖在极化肠和肾上皮细胞的顶端膜中转移。这些钠 - 葡萄糖共转运蛋白是次要激活。:似乎与促进性葡萄糖转运蛋白无关的转移系统。由于葡萄糖在细胞代谢中所起的核心作用,几乎所有哺乳动物细胞中都存在一个或多个葡萄糖转运蛋白。在大多数细胞类型中,葡萄糖转运蛋白仅参与血糖的净摄取以用于细胞代谢。然而,在某些组织中,葡萄糖转运蛋白可能会参与细胞葡萄糖的净外排。例如,此过程发生在葡萄糖跨肠道或肾上皮的吸收或重吸收期间,在basolat-eary1膜中存在可容纳的葡萄糖转运蛋白,并使糖的被动通量降低其浓度梯度进入血液中。此外,在禁食过程中,转运蛋白参与了肝脏或肾脏细胞的细胞葡萄糖的净出口。葡萄糖转运蛋白参与了升高和降低血糖水平,因此非常适合参与葡萄糖稳态的调节。本综述将重点介绍有关几种关键哺乳动物组织中葡萄糖转运蛋白的最新进展。首先,我们简要描述了葡萄糖转运蛋白亚型的某些物理特性。
纳米机器人代表了靶向药物输送和神经系统疾病治疗的变革性前沿,具有跨越血脑屏障 (BBB) 的巨大潜力。利用纳米技术和生物工程的进步,这些微型设备表现出精确导航和靶向有效载荷输送的能力,特别是在治疗脑瘤、阿尔茨海默病和帕金森病等疾病方面。人工智能 (AI) 和机器学习 (ML) 的最新发展正在增强纳米机器人的导航和功效,使它们能够通过生物标志物分析检测癌细胞并与癌细胞相互作用。这项工作提出了一种新颖的强化学习 (RL) 框架,用于优化纳米机器人在复杂生物环境中的导航,重点是通过分析周围生物标志物的浓度梯度来检测癌细胞。使用计算机模拟模型,我们探索了纳米机器人在充满癌细胞和生物屏障的三维空间中的行为。所提出的方法采用 Q 学习来根据实时生物标志物浓度数据改进运动策略,使纳米机器人能够自主导航到癌组织进行靶向药物输送。这项研究为后续的实验室实验和临床应用建立了基础模型,对推进个性化医疗和开发微创癌症治疗具有重要意义。智能纳米机器人的整合可以彻底改变治疗方法,减少副作用并提高癌症患者的治疗效果。进一步的研究将探索这些技术在医疗环境中的实际部署,旨在充分发挥纳米机器人在医疗保健领域的潜力。此模拟的源代码可在 GitHub 上找到:https://github.com/SHAHAB-K93/cancer-and-smart-nanorobot
摘要:固态电池(SSB)是现任锂离子技术的有前途的替代品;但是,他们面临一系列独特的挑战,必须克服这些挑战,以使其广泛采用。这些挑战包括高电阻,动力学缓慢的固体 - 固体界面,以及形成界面空隙的趋势,导致由于断裂和分层而导致的循环寿命降低。这项建模研究通过将化学和机械材料特性与其电化学响应联系起来,探测了固体电解质(SE)固体 - 固体界面上应力的演变,可以用作优化基于硅(SI)SSB的设计和制造的指南。研究了由无定形SI负电极(NE)组成的薄膜固态电池,该电池由SI的静脉诱导的膨胀引起的SE施加压缩应力。通过使用2D化学 - 机械模型,使用连续尺度模拟来探测施加的压力和C率对细胞应力 - 应变响应的影响及其对整体细胞容量的影响。由于LI通过Si的缓慢扩散而导致局部菌株,因此在Si电极内产生了复杂的浓度梯度。为了减少100%SOC的界面应力和应变,需要在中等的C速率下运行低施加压力。另外,可以对SE的机械性能进行量身定制以优化细胞性能。但是,如果SE应力的减少更加关注,则应针对具有中等屈服强度(1-3 GPA)的符合年轻的模量(约29 GPA)。为了减少SI应激,应选择具有与磷氧硝酸锂(〜77 GPa)相似的中等年轻模量的SE,应选择与硫化物相当的低屈服强度(〜〜0.67 GPA)。这项研究强调了对SE材料选择的需求和其他细胞成分的考虑,以优化薄膜固态电池的性能。关键字:固态电池,薄膜,实心电解质,材料选择,有限元分析模型,弹性,塑料,硅负电极
二氧化钛(TIO 2)最近引起了极大的关注,这主要是由于骨科和纳米材料科学的交集。这种感兴趣的激增可以归因于良好的理解,即Ti金属在暴露于大气条件时会经历表面氧化,最终导致外部面上强大的天然Tio 2层的形成。诸如阳极氧化等技术进一步增强了这一过程,从而导致了在生物学上兼容和成骨的钝化表面涂层的发展。纳米材料化学的进步在该结构域中至关重要,从而使TIO 2结构的受控组装(包括纳米纤维和纳米管)具有受控组装。此外,已经确定了特定的合成方法,可以产生具有分层结构的钛酸簇,这有利于磷灰石形成 - 天然骨组织的无机复合物。也值得注意的是,二氧化钛具有反应并转化为钛纳米管或纳米线的能力。这种特征已被证明是有益的,因为它已被证明可以促进与体液的离子交往相互作用,从而支持骨组织生长。具体来说,当将钛材料放入模拟的体液中时,离子交换开始并鼓励羟基磷灰石的产生,羟基磷灰石是天然骨的基本成分。纳米材料化学丰富了这一研究领域,许多实验室已经研究了结构控制TIO 2的形态,例如纳米纤维和纳米管[11,12]。这种产生的离子层结构作为阳离子储层起着至关重要的作用。已经确定了合成方法中的进步来产生钛酸盐材料,这些材料由它们的粘土状晶格(由边缘共享TIO TIO 6八面体组成)与阳离子实体散布在一起[13]。这种分层结构特别有利于模拟体液(SBF)中的磷灰石形成。更具体地说,涉及粉状TIO 2矿物质的热液反应,例如假酶和氧化钠或氢氧化钾溶液,会根据反应条件而产生Na-或K- titanate纳米管或纳米线。它有助于体液中发现的阳离子的离子交换,因此自主维持阳离子平衡原位,这对于骨组织生长至关重要。在SBF环境中,Na/k- titanate和钙(Ca 2+)之间的浓度梯度促使具有Ca 2+的单价Na +或K +离子的离子交换。这为随后的相互作用设定了阶段:磷酸盐阴离子的协调{即(PO 3)3-,(HPO 3)2-和(H 2 PO 3) - 从体液与泰坦酸盐结合的Ca 2+的体液中的(H 2 PO 3) - }。这种相互作用的顶点是形成水合磷酸钙或羟基磷灰石的形成,羟基磷灰石是天然骨的必不可少的基础[13]。
AML是成年人中最常见的急性白血病,并且与生存率差有关,尤其是在60岁以上的患者中,其中只有5-15%的治愈年龄。此外,无法忍受强化化疗的老年患者的总体生存率仅为5-10个月。因此,需要采用新颖的治疗方法来提高AML的治愈率。有趣的是,表现出脱水的GLUT1介导的葡萄糖摄取会损害AML细胞的增殖,并移植Glut1骨中的鼠AML细胞减弱了小鼠AML的发育,这表明Glut1在AML中起重要作用。3因此,靶向GLUT1可以通过过度抗Ara-C耐药性来反映AML中新型的治疗脆弱性。但是,仍然没有针对Glut的临床上可用的药物,这可能部分是由于缺乏适当的体外药物筛查系统。在这里,我们提出了抑制葡萄糖转运蛋白并使AML细胞化学疗法的详细结构和功能分析。glut1是一种整体膜蛋白,由12个跨膜螺旋和一个细胞内结构域组成,它根据浓度梯度转运葡萄糖(图1A)。4,由于缺乏易于访问的读数,测量传输未充电底物的glut1(例如GLUT1)的活性是具有挑战性的。但是,我们已经开发了一个系统,通过该系统将纯化的葡萄糖转运蛋白在体外重新确定为巨型囊泡,并使用荧光显微镜报告其转移活性。并行,将相同的MD协议应用于5这使得通过将纯化的转运蛋白嵌入脂质双层中,模仿哺乳动物细胞的大小和弯曲,可以测量葡萄糖的摄取而不会受到其他蛋白质的任何干扰。应用这种方法,对众所周知的GLUT1抑制剂WZB-117和Cytochalasin b(Cb)验证并分析了PGL1抑制剂PGL1抑制剂PGL1,PGL-14和PGL-14和PGL-27(图1B)。对于PGL-13和PGL-14,检测到葡萄糖吸收的明显减少,但对于PGL-27,葡萄糖的吸收量明显减少(图1C)。为了合理化这些结果,进行了分子建模研究,包括对接,分子动力学(MD)模拟和配体 - 蛋白结合能评估。先前已经在与CB和苯丙氨酸酰胺基抑制剂7中确定了GLUT1的结构,该抑制剂7显示与中央底物结合位点结合(图1A)。评估PGL-13和PGL-14是否也在底物结合位点相互作用,PGL-14在内向开放的构象中被停靠到GLUT1位点。7可以将扩展坞溶液聚集成三个结合姿势,对于每个群集,使用最佳估计结合能的对接溶液被选为代表性的电势结合模式。为了评估预测结合模式的可靠性,对三种配体 - 蛋白质复合物(复合物1-3,在线补充图S1A-C)进行了MD模拟。