海马结构在空间认知和情景记忆中起着关键作用,而杏仁核对于适应性恐惧条件作用至关重要。我们通过整合“TM24Amygdala ver4”(基于“YM24Amygdala”)和“TN24HippocampalFormation”BRA 数据,开发了一种大脑参考架构 (BRA) 数据格式。此 BRA 数据通过纳入新的大脑信息流 (BIF) 来扩展以前的 BRA 模型,该信息流可以捕捉海马结构和杏仁核之间的连接。构建的 BIF 为定义与空间认知和恐惧条件作用相关的高阶功能提供了基础。这些改进加深了我们对连接这些区域及其相互关联的功能的解剖结构的理解。BRA 存储库提供了对这些数据的全面访问,支持进一步研究海马结构和杏仁核之间的功能和结构关系。这项工作不仅增进了我们对每个区域各自作用的理解,而且还深入了解了它们的相互作用如何塑造复杂的认知和情感过程。
这项研究以临床癫痫患者的脑MRI检查为中心,以其他T2空间深色液体序列为特征。脑部MRI检查与NA脑中心中心医院的临床癫痫病经常检查。癫痫病是这种疾病,其特征是由大脑功能障碍引起的复发性癫痫发作。与之相关的是,本研究旨在分析深色液体T2空间序列的使用,并分析深色流体T2空间的MRI图像的结果,以获取有关国家脑中心中心医院临床癫痫的冠状MRI MRI脑解剖图像的信息。至于所使用的研究设计具有描述性的定性,案例研究方法是从2月至2023年5月在国家大脑中心医院进行的,使用Siemens Sky-Ra MRI飞机,具有3 Tesla的力量。这项研究的种群是患有临床颞叶癫痫(TLE)的患者,样本的数量为10例。这项研究的结果表明,使用T2空间深色液体序列的使用会产生更详细的海马结构图像。此外,它为评估海马结构提供了良好的空间分辨率,从而使海马内异常信号强度的可视化以及促进海马异常的检测。因此,可以得出结论,在诊断癫痫病例中,使用T2空间深色液体非常重要,并且非常有用。
海马体对学习和记忆至关重要,在生命早期会发生重大变化。研究海马结构和功能的发育轨迹需要一种精确的方法来从解剖 MRI 扫描中分割出该区域。尽管手动分割被视为“黄金标准”方法,但它既费力又主观。这推动了人们对成人自动分割方法的追求。然而,人们对这些自动化协议对婴儿的可靠性知之甚少,特别是当解剖扫描质量因头部运动或使用更短、更安静的婴儿友好型序列而降低时。在基于任务的 fMRI 协议中,我们收集了 42 个会话中的安静 T1 加权解剖扫描,这些会话针对年龄在 4 至 23 个月之间的清醒婴儿。两位专家追踪者首先手动分割了两个半球的海马体。得到的评分者间信度 (IRR) 仅为中等,反映了婴儿分割的难度。然后,我们使用了四种协议来预测这些手动分割:普通成人模板、普通婴儿模板、FreeSurfer 软件和海马子域自动分割 (ASHS) 软件。ASHS 生成了最可靠的婴儿海马分割,超过了专家的手动 IRR。因此,自动化方法可以为嘈杂的 T1 加权婴儿扫描提供稳健的海马分割,为探究早期海马发育开辟了新的可能性。
摘要 盐酸曲马多是一种具有中枢作用的合成阿片类药物,用于治疗中度至中度重度疼痛,据报道具有神经毒性。因此,本研究探讨了曲马多对海马结构中体重、尼氏体和星形胶质细胞变化的影响。对照组大鼠口服2ml/kg蒸馏水,第2组大鼠口服50mg/kg曲马多,连续21天。实验前后称量大鼠体重。对大鼠实施安乐死,取脑并称重。将取下的脑用10%甲醛盐水固定,常规处理,用甲酚固紫(CFV)染色以显示尼氏物质,用胶质纤维酸性蛋白(GFAP)染色以显示星形胶质细胞的表达。CFV染色显示曲马多治疗组这些有病理改变的区域染色强度降低。GFAP显示大量反应性星形胶质细胞突起;星形胶质细胞突起重叠和交错;星形胶质细胞增殖;星形胶质细胞细胞体肥大和星形胶质细胞突起增厚。本研究结果揭示了重量、尼氏体和海马形成组织病理学的变化。关键词:海马形成、组织化学、组织病理学、免疫组织化学、神经变性引言阿片类药物滥用已成为一场全球健康危机,影响着世界各地不同背景和社区的个人。在阿片类药物中,曲马多已获得
终纹床核 (BNST) 的前部调节恐惧和压力反应。前背 BNST (adBNST) 在解剖学上可进一步细分为外侧和内侧部分。尽管已经研究了 BNST 亚区的输出投影,但对这些亚区的局部和全局输入连接仍然知之甚少。为了进一步了解以 BNST 为中心的电路操作,我们应用了新的病毒遗传追踪和功能电路映射来确定小鼠 adBNST 外侧和内侧亚区的详细突触电路输入。在 adBNST 亚区注射了单突触犬腺病毒 2 型 (CAV2) 和狂犬病毒逆行示踪剂。杏仁核复合体、下丘脑和海马结构占 adBNST 总体输入的大部分。然而,外侧和内侧 adBNST 亚区具有不同的长距离皮质和边缘大脑输入模式。外侧 adBNST 具有更多来自前额叶(前边缘、下边缘、扣带回)和岛叶皮质、前丘脑和外嗅皮层/外嗅皮层的输入连接。相比之下,内侧 adBNST 接收来自内侧杏仁核、外侧隔膜、下丘脑核和腹侧下托的偏向输入。我们使用 ChR2 辅助电路映射确认了从杏仁海马区和基底外侧杏仁核到 adBNST 的长距离功能输入。选定的新型 BNST 输入还通过来自艾伦研究所小鼠脑连接图谱的 AAV 轴突追踪数据进行了验证。总之,这些结果提供了外侧和内侧 adBNST 亚区差异传入输入的全面图谱,并为 BNST 电路对压力和焦虑相关行为的功能操作提供了新的见解。
终纹床核 (BNST) 的前部调节恐惧和压力反应。前背 BNST (adBNST) 在解剖学上可进一步细分为外侧和内侧部分。尽管已经研究了 BNST 亚区的输出投影,但对这些亚区的局部和全局输入连接仍然知之甚少。为了进一步了解以 BNST 为中心的电路操作,我们应用了新的病毒遗传追踪和功能电路映射来确定小鼠 adBNST 外侧和内侧亚区的详细突触电路输入。在 adBNST 亚区注射了单突触犬腺病毒 2 型 (CAV2) 和狂犬病毒逆行示踪剂。杏仁核复合体、下丘脑和海马结构占 adBNST 总体输入的大部分。然而,外侧和内侧 adBNST 亚区具有不同的长距离皮质和边缘大脑输入模式。外侧 adBNST 具有更多来自前额叶(前边缘、下边缘、扣带回)和岛叶皮质、前丘脑和外嗅皮层/外嗅皮层的输入连接。相比之下,内侧 adBNST 接收来自内侧杏仁核、外侧隔膜、下丘脑核和腹侧下托的偏向输入。我们使用 ChR2 辅助电路映射确认了从杏仁海马区和基底外侧杏仁核到 adBNST 的长距离功能输入。选定的新型 BNST 输入还通过来自艾伦研究所小鼠脑连接图谱的 AAV 轴突追踪数据进行了验证。总之,这些结果提供了外侧和内侧 adBNST 亚区差异传入输入的全面图谱,并为 BNST 电路对压力和焦虑相关行为的功能操作提供了新的见解。
除了影响下丘脑和其他与生殖有关的脑区外,卵巢类固醇还对整个脑部、血清素通路、儿茶酚胺能神经元、基底前脑胆碱能系统以及海马结构(一个与空间记忆和陈述性记忆有关的脑区)产生广泛影响。因此,卵巢类固醇对情感状态和认知有可测量的影响,对痴呆症有影响。本综述讨论了两种作用;这两种作用似乎都涉及卵巢激素的基因组作用和非基因组作用的结合。首先,血清素系统的调节似乎与中脑缝中雌激素和孕激素敏感神经元的存在以及血清素神经元投射轴突的脑区中可能存在的非基因组作用有关。其次,卵巢激素在雌性大鼠 4 至 5 天的发情周期内调节海马 CA1 区突触的周转。雌二醇诱导新的兴奋性突触形成,涉及 N-甲基-D-天冬氨酸 (NMDA) 受体,而这些突触的下调涉及细胞内孕激素受体。一种新的快速放射免疫细胞化学方法通过标记和量化所涉及的特定突触和树突分子,使突触形成的证明成为可能。虽然 NMDA 受体激活是突触形成的必要条件,但抑制性中间神经元可能发挥关键作用,因为它们表达核雌激素受体-α (ER)。雌激素也可能局部调节突触形成的兴奋性锥体神经元中突触接触位点的事件。事实上,最近的超微结构数据显示,在海马主细胞、轴突、轴突末端和神经胶质突起上的部分树突棘内存在核外 ER 免疫反应。特别是,ER 在树突中的存在与突触形成的模型相一致,在该模型中,树突的假足长出以寻找新的突触接触,雌激素通过第二信使系统调节局部转录后事件。
叶。在本章中,我们将讨论在计算机模型中重建啮齿动物海马的方法。由于海马结构在哺乳动物中大多得以保留,因此一些见解可能不仅限于啮齿动物。在啮齿动物中,海马体是位于新皮质正下方的显著结构。当我们说海马体时,我们指的是四个亚区域:齿状回 (DG)、海马角 1、2 和 3 (CA1、CA2 和 CA3)。一些作者使用术语海马体仅指 CA1、CA2 和 CA3。最后,对于术语海马体形成,我们还包括下托、前下托、副下托和内嗅皮质。海马体在多种认知功能中发挥着重要作用,例如学习和记忆(Jarrard 1993)和空间导航(O'Keefe and Nadel 1978)。海马体也与某些病理有关。例如,在阿尔茨海默病中,海马体似乎在疾病扩散到整个大脑之前的早期阶段就受到影响。在癫痫中,颞叶通常是癫痫发作的焦点,因为与其他皮质区域相比,海马体需要的电流要少得多,才能引发癫痫样活动。此外,海马体,特别是 CA1,极易受到缺血或缺氧损伤,这使得该区域在脑血管疾病中至关重要。海马体因其特殊的结构和特性而促成了许多发现。首先,它具有相对简单有序的结构,共有四层,其中兴奋性细胞仅占据一层。不同的海马区几乎单向连接,长距离纤维与锥体细胞的主要树突轴正交传播。此外,突触具有高度的可塑性,因此它们可以根据突触前和突触后细胞的行为改变其强度。最后,神经元可以在培养物中生长,并且急性或培养的切片可以在体外存活足够长的时间以用于实验。所有这些特性使海马体成为了解大脑一般原理的便捷基准。受益于海马体实验的关键发现