海马体对学习和记忆至关重要,在生命早期会发生重大变化。研究海马结构和功能的发育轨迹需要一种精确的方法来从解剖 MRI 扫描中分割出该区域。尽管手动分割被视为“黄金标准”方法,但它既费力又主观。这推动了人们对成人自动分割方法的追求。然而,人们对这些自动化协议对婴儿的可靠性知之甚少,特别是当解剖扫描质量因头部运动或使用更短、更安静的婴儿友好型序列而降低时。在基于任务的 fMRI 协议中,我们收集了 42 个会话中的安静 T1 加权解剖扫描,这些会话针对年龄在 4 至 23 个月之间的清醒婴儿。两位专家追踪者首先手动分割了两个半球的海马体。得到的评分者间信度 (IRR) 仅为中等,反映了婴儿分割的难度。然后,我们使用了四种协议来预测这些手动分割:普通成人模板、普通婴儿模板、FreeSurfer 软件和海马子域自动分割 (ASHS) 软件。ASHS 生成了最可靠的婴儿海马分割,超过了专家的手动 IRR。因此,自动化方法可以为嘈杂的 T1 加权婴儿扫描提供稳健的海马分割,为探究早期海马发育开辟了新的可能性。