在人类神经科学中,机器学习可以帮助揭示与受试者行为相关的低维神经表征。然而,最先进的模型通常需要大量数据集进行训练,因此很容易在人类神经成像数据上过度拟合,而这些数据通常只包含少量样本但输入维度很多。在这里,我们利用了这样一个事实:我们在人类神经科学中寻找的特征正是与受试者行为相关的特征,而不是噪音或其他不相关的因素。因此,我们开发了一种通过分类器增强的任务相关自动编码器 (TRACE),旨在识别与行为相关的目标神经模式。我们针对两个严重截断的机器学习数据集(以匹配单个受试者的功能性磁共振成像 [fMRI] 数据中通常可用的数据)对 TRACE 与标准自动编码器和其他模型进行了基准测试,然后根据 59 名观察动物和物体的受试者的 fMRI 数据评估了所有模型。 TRACE 的表现几乎完全优于其他模型,分类准确率提高了 12%,在发现“更清晰”、与任务相关的表示方面提高了 56%。这些结果展示了 TRACE 在处理与人类行为相关的各种数据方面的潜力。
主要关键词