量子机器学习的编码技术
机构名称:
¥ 10.0

如今,量子计算 (QC) 和机器学习 (ML) 是信息技术最具创新性的两个研究领域。量子机器学习 (QML) 将这两个主题融合在一起,开发出能够通过 QC 技术降低计算复杂度的 ML 任务模型。一个相关的 ML 应用是分类,它根据在初步学习过程中建立的模型识别新输入数据所属的类别。这是在由特征(描述数据的数字向量)和标签(预期输出类别)组成的训练数据集上实现的。分类器的准确性可以通过正确预测结果的总数与处理的数据总数来量化。对于近期应用,当前量子硬件在执行可靠性和可扩展性方面的局限性促进了混合 QML 解决方案的定义,这些解决方案充分利用了量子和经典处理。其中,可以提到变分量子电路和基于量子核估计的支持向量机。前者使用经过经典优化的参数化量子电路实现分类模型,以实现更高的精度。另一种尝试使用经典优化器最大化属于两个不同类别的数据的可区分性,并借助量子计算将特征映射到更高维空间中。在这两种情况下,都需要进行初步编码操作以将经典数据表示到量子系统上。然后,根据混合解决方案和信息的表示方式,特定的量子和经典操作完成分类。本论文旨在验证数据编码策略会影响模型的准确性,因此必须将其视为 QML 算法的可优化自由度。特别是,我们考虑了具有最有希望的可扩展性的幅度和角度编码。第一个将数据特征映射到量子位状态向量的概率幅度,而另一个则将数据嵌入为旋转门的角度参数。在这项工作中,我们探索了新的角度编码技术,并将其与文献中已有的技术进行了比较,以观察对准确性的影响,研究了 60 种不同的策略。使用 Pennylane QML 库开发和模拟了派生模型,而测试考虑了 Iris 和 Wine 数据集,以证明分类准确性对编码的依赖性。对于每个

量子机器学习的编码技术

量子机器学习的编码技术PDF文件第1页

量子机器学习的编码技术PDF文件第2页

量子机器学习的编码技术PDF文件第3页

量子机器学习的编码技术PDF文件第4页

量子机器学习的编码技术PDF文件第5页