摘要:支持向量机 (SVM) 和核方法 (KM) 被广泛用于数据学习中的分类和回归。核是将数据映射到更高(可能是无限)维度的正定函数。通常,SVM 1 将核方法实现为子程序,将非线性数据映射到更高维度,使其变为线性可分。SVM 在此特征空间中的数据点类别之间绘制线性决策边界。本文从经典机器学习的角度回顾了核和核方法及其在量子机器学习中的可能实现。我们从核的基础开始,包括希尔伯特空间和再生核希尔伯特空间、Mercer 条件,并证明了三个广泛使用的核满足 Mercer 条件的有效性。我们回顾了两种不同的量子机器学习方法,即参数化量子电路和基于核的训练,并讨论了其中一种相对于另一种的潜在优势。本文可以帮助读者开始了解核理论和量子机器学习。
主要关键词