变分量子算法 (VQA) 已被证明是 QML 最有前途的方法,因为它们使用经典计算机来最大限度地减少当今量子计算机的局限性。 VQA 使用经典计算机来优化参数化量子电路 (PQC),该电路在量子计算机上计算解决方案。然而,这些 VQA 的性能高度依赖于所选的超参数,这些超参数必须在执行之前确定,并且高度依赖于问题。由于已经有大量超参数可供选择,因此手动测试它们非常耗时且耗资源。因此,在经典的 ML 应用中,人们会使用自动化解决方案,但它们对 QML 的适用性几乎尚未得到研究。因此,在本研究中,我们研究了各种自动超参数调整算法对于 QML 分类问题的适用性和性能。