摘要 — 本教程提供了引人入胜的量子机器学习 (QML) 领域的实践介绍。从量子信息科学 (QIS) 的基础开始——包括量子比特、单量子比特门和多量子比特门、测量和纠缠等基本元素——课程迅速进展到基础 QML 概念。参与者将探索参数化或变分电路、数据编码或嵌入技术以及量子电路设计原理。深入研究后,与会者将研究各种 QML 模型,包括量子支持向量机 (QSVM)、量子前馈神经网络 (QNN) 和量子卷积神经网络 (QCNN)。本教程突破界限,深入研究前沿 QML 模型,例如量子循环神经网络 (QRNN) 和量子强化学习 (QRL),以及量子联合机器学习等隐私保护技术,并通过具体的编程示例提供支持。在整个教程中,所有主题和概念都通过在量子计算机模拟器上执行的实际演示变得生动有趣。课程内容专为新手设计,适合那些渴望踏上 QML 之旅的人。与会者还将获得有关进一步阅读材料的指导,以及课程结束后可以探索的软件包和框架。
主要关键词