摘要 单次读出是可扩展量子信息处理的关键部分。然而,许多具有良好特性的固态量子比特缺乏单次读出能力。一种解决方案是使用重复量子非拆除读出技术,其中量子比特与辅助量子比特相关,然后读出辅助量子比特。因此,读出保真度受到测量对量子比特的反作用的限制。传统上采用阈值法,其中仅使用总光子数来区分量子比特状态,丢弃隐藏在重复读出测量的时间轨迹中的所有反作用信息。这里我们展示通过使用机器学习(ML),人们可以利用时间轨迹数据获得更高的读出保真度。ML 能够识别反作用发生的时间,并正确读出原始状态。由于信息已经被记录(但通常被丢弃),这种保真度的提高不会消耗额外的实验时间,并且可以直接应用于涉及重复读出的测量制备和量子计量应用。
主要关键词