Dennard 缩放:1974 年,Robert Dennard 等人 [3] 撰写了一篇开创性的论文,描述了晶体管缩放规则,该规则能够同时提高性能、降低功耗并持续提高密度。Dennard 工作中的原则被半导体行业采纳为未来 30 年推动摩尔定律的有效路线图,为我们提供了持续改进晶体管技术的可预测路径。绕过瓶颈的重大突破包括:(a) 创新浸没式光刻技术,用于图案化低于光波长的特征 [3],以继续实现密度缩放;(b) 创新工艺和工具,用于超薄栅极氧化物和超浅结的原子级精密工程,以解决 30 纳米以下栅极长度的静电控制瓶颈;(c) 晶圆尺寸从 100 毫米过渡到 300 毫米,以提高工厂产量并降低成本。
过去十年,对数据中心和网络服务的需求迅速增长。然而,由于更高效的电子硬件、向超大规模和云数据中心的迁移以及更高效的冷却基础设施等,近年来电力需求已经趋于稳定。本文对冷却技术进行了关键概述并讨论了研究差距。数据通信设施中的冷却技术大致可分为风冷和液冷系统。架空/地板下送风、热/冷通道布局和热/冷通道遏制是优化风冷系统性能的主要策略。架空地板架构已在数据通信设施中得到广泛采用,但存在大量气流泄漏(约 25-50%)。研究发现,最佳通风系统是硬地板设计,采用架空冷风输送和热风回风管道,而不是基于房间的送风和回风。冷通道遏制可以更好地降低机架的最高入口温度并抑制冷却系统故障时的温升,而热通道遏制可以提供更低的机架平均入口温度和更小的标准差,并且受服务器周围气密性的影响更小。随着机架功率密度超过 10 kW/机架且热流超过 100 kW/cm 2 ,传统的风冷系统不再是可行的热管理解决方案。喷雾冷却、冲击射流、浸没冷却、液冷微通道和热管等液体冷却方法是克服风冷系统容量限制的新兴技术之一。对于浸没冷却,过渡到过冷两相流沸腾、通过添加微结构或不规则性来创造更多的成核位点和更大的传热表面积来增强传热以及利用纳米流体是受到学者关注的突出增强策略。将电力电子模块浸入液体中可使热阻降低至空气冷却系统的 25%,或微通道或喷雾冷却等液体冷却系统的 30-50%。根据现有的冷却系统、总体热负荷和热点,热管系统可以作为独立单元或与空气冷却系统结合使用,即所谓的混合系统,为数据中心提供服务。与典型的空气冷却系统相比,混合系统可以分别降低 37-58% 和 20-70% 的年度冷却负荷系数和能耗。
摘要:纳米技术是基于植物的疗法的最新方向之一。慢性静脉疾病通常易于长期和侵入性治疗。这项研究的重点是从Sophorae Flos(Se),金缆果(CE)和Ginkgo bilobae Folium(GE)中纳入植物提取物,其中包括PHB和PLGA聚合物的构建,及其物理化学表征作为在复杂的治疗产品开发中可能使用的初步阶段。样品是通过石油 - 水乳化和溶剂蒸发技术制备的,导致悬浮液具有较高的可扩展性,pH值为5.5。ATR-FTIR分析揭示了与碱基成分相同的区域的拉伸振动(O-H,C = O和C-H)在对称和非对称甲基和甲基中的C-H),但转换为高或低的波维因和吸收剂,并强调了提取物/提取物之间的累积的形成。通过XRD分析证实,获得的制剂处于无定形相。AFM分析强调了提取物 - 聚合物纳米成型的形态特征。可以注意到,在基于SE的制剂的情况下,SE-PHB和SE-PLGA组成的主要特性是形成随机大(SE-PHB)和较小的均匀(SE-PLGA)颗粒的形成。此外,在Se-PhB-Plga的情况下,这些颗粒倾向于聚集。对于基于CE和GE的配方,主要的表面形态是它们的孔隙率,通常有小毛孔,但在某些情况下(CE-和GE-PHB)观察到较大的空腔。在以下样品中发现了(8 µm×8 µm)等级处的最高粗糙度值:CE-PHB 此外,通过热重分析,评估了压缩袜基质中的浸没,该基质在以下顺序上有所不同:Ce-Polymer> se-polymer> se-Polymer> ge-Polymer。 在结论中,制备了九种植物提取物 - 聚合物纳米构造,并初步表征(通过先进的理化方法)作为进一步优化,稳定性研究以及可能在复杂药品中使用的起点。此外,通过热重分析,评估了压缩袜基质中的浸没,该基质在以下顺序上有所不同:Ce-Polymer> se-polymer> se-Polymer> ge-Polymer。在结论中,制备了九种植物提取物 - 聚合物纳米构造,并初步表征(通过先进的理化方法)作为进一步优化,稳定性研究以及可能在复杂药品中使用的起点。
气动囊式泵具有独特、温和的操作,非常适合低流量采样。压缩空气的定时开/关循环交替挤压柔性囊以将水从泵中排出,并释放它以允许泵通过浸没重新填充,而不会产生任何可能影响样品化学性质的干扰。囊式泵可以长时间以低速率轻松运行,而不会出现其他设备的问题。• 高速电动泵电机不会过热,过热会改变样品并损坏泵。• 没有搅拌动作,如舀水器或惯性提升采样器,这会增加浊度。• 没有吸力导致溶解的挥发性污染物脱气。气囊可防止泵驱动空气与样品接触,并且井下设备永久专用于每个井,因此样品和井都受到保护,免受干扰或跨井污染的危险。
等效附加系数 (-) CAPPSUM[capp(i)*sapp(i)]/SUM[sapp(i)] 轴支架 : capp(i) 3.0 尾鳍 : capp(i) 1.5-2.0 支柱凸台 : capp)i) 3.0 船体凸台 : capp(i)= 2.0 轴 : capp(i) 2.0-4.0 稳定鳍 : capp(i) 2.8 圆顶 : capp(i)= 2.7 舭龙骨 : capp(i) 1.4 CAPP 球鼻艏横截面积 (m2) ABULB 球鼻艏横截面积质心至龙骨 (m) HBULB 艏侧推器隧道直径 (m) 艏侧推器数量 : DBTTDBTT*sqrt(N) ..DBTT 船首侧推器隧道阻力系数 船首圆柱形部分的推进器:CBTT-0.003 最差位置的推进器:CBTT-0.012 CBTT 浸没横梁面积(m2) AT 运行长度(m)(如果未知 SLR-0)。。SLR 水线入口角(如果。未知 0 度)--ALFA 螺旋桨数量:0-2,如果<>0 计算。W、T、RRE NPROP
近年来,半导体技术的不断缩小,极大地受益于三维(3D)集成技术和三维晶体管的快速发展。1 – 7预计未来迫切需要在更复杂的3D器件和3D动态随机存取存储器(3D DRAM)方面取得进一步进展。在此过程中,需要开发和采用许多创新的测量技术来表征3D器件和3D单元,以深入了解新器件和新材料的结构-功能关系,从而辅助设计性能更佳的先进3D器件。随着3D器件变得越来越复杂,涉及更多的埋置固/固界面,而这些埋置界面上的分子相互作用对整个器件的性能起着关键作用,应进行原位研究。极紫外 (EUV) 光刻技术已用于 3D 技术,其通过次数不断增加,可用于 7 纳米和 5 纳米节点逻辑集成电路以及 16/14 纳米节点 DRAM 的批量生产。8 – 10 与 193 纳米浸没式光刻技术相比,
引言植物组织培养是一种无菌技术,用于快速对健康,无病原体和真实型植物的微繁殖。1目前,在商业植物组织培养实验室中常规大量批量生产及其方案是通过器官发生或胚胎发生建立的。然而,这种方法仍然面临一些局限性,例如微繁殖过程的耗时性质和每个生产的植物的成本高成本。导致成本增加的主要因素是劳动力,材料和化学物质。2此外,许多小型文化船的清洁,归档和处理需要更多的时间和劳动。此外,在适应和转移到土壤期间可能会丢失一些植物。已努力降低成本并提高再生植物的质量和数量。3最有希望的方法是光自养微繁殖(带有无琼脂培养基)和生物反应器。琼脂是昂贵的成分之一,它被添加为胶凝剂,用于凝固培养基并防止外植体浸没。在植物组织培养中测试了不同的支撑矩阵作为琼脂的替代品,例如木薯粉,玉米粉,煮土豆,
本文档中包含的信息取代了本手册其他地方可能找到的所有类似信息。总客户满意度 - PCB压电能确保总客户满意度。如果由于任何原因,您都不对任何PCB产品完全满意,PCB将免费维修,更换或交换它。您还可以选择退还购买价格,以代替产品的维修,更换或交换产品。服务 - 由于传感器和PCB压电提供的相关仪器的复杂性,不建议使用用户维修或维修,如果尝试使用,则可能会使出厂保修无效。常规维护,例如清洁电连接器,外壳和固定表面,这些解决方案和技术不会损害建筑物的物理材料。应注意,以确保不允许液体迁移到未密封的设备中。这样的设备只能用湿布擦拭,从不浸没或倒在上面。维修 - 如果设备被损坏或停止操作,则应安排将设备返回PCB压电量进行维修。不建议使用用户维修或维修,如果尝试,可能会使工厂保修无效。校准 - 传感器和相关仪器的常规校准
摘要:本研究提出了一种新的方法,用于通过将二碳二碳混合凝胶装入硫的二含二碳离子电池电极来开发高性能锂离子电池电极。所得的混合材料结合了高电荷存储容量,电导率和核心壳形态,从而能够开发下一代电池电极。我们使用模板辅助的溶胶 - 凝胶途径获得了均匀的碳球,并用硫化氢仔细处理了装载二氧化钛的碳球凝凝胶。碳壳保持其微孔空心球体形态,可以在保护二氧化钛晶体的同时有效地硫沉积。通过调节碳球的硫浸没并改变二氧化钛的负载,我们通过成功地循环封装在球体中的硫,同时从泰坦尼亚颗粒的锂化中受益,从而实现了出色的锂储存性能。没有添加导电组件,在150个周期后提供的优化材料在250 mA g -1的特定电流下提供了825 mAh g -1的特异性容量,库仑效率为98%。关键字:硫载,杂交碳球凝架,碳封装,锂离子电池,阳极材料,电极设计
电子设备已经渗透到现代生活的方方面面,从玩具、家用电器到高功率计算机。系统中电子设备的可靠性是系统整体可靠性的主要因素。电子元件依靠电流的通过来执行其任务,它们成为过热的潜在场所,因为电流通过电阻时会产生热量。电子系统的不断小型化导致单位体积产生的热量急剧增加,其数量级可与核反应堆和太阳表面的热量相媲美。除非设计和控制得当,否则高发热量会导致电子设备的工作温度过高,从而危及电子设备的安全性和可靠性。电子设备的故障率会随着温度的升高而呈指数级增长。此外,由于温度变化导致安装在电路板上的电子元件焊点中产生高热应力,这是导致故障的主要原因。因此,热控制在电子设备的设计和操作中变得越来越重要。在本章中,我们讨论了电子设备中常用的几种冷却技术,例如传导冷却、自然对流和辐射冷却、强制风冷、液体冷却和浸没冷却。本章旨在让读者熟悉这些技术并对其进行透视。有兴趣深入了解这些主题的读者可以查阅许多其他可用资源,例如参考文献中列出的资源。