在本论文中,研究了一个新的Ballbot Rezero的球结构,其负载能力高达100 kg。此外,需要低重量和良好的形式稳定性,以实现轻松的球。还应在地面上提供足够的摩擦,以避免滑动和阻尼特性,以使像地毯边缘这样的小凹凸被吸收。在功能分析的帮助下,发现了一个新的球版本,该版本由内部形式稳定的空心球和外部摩擦提供涂层组成。通过使用聚酰胺-12(PA-12)对内部和聚氨酯(PU)进行外部部分,得出上述规格来实现此结构。这种具有高负载能力的新球结构为使用REZERO用于运输目的的基础奠定了基础。
摘要。这项研究的目的是开发创新的损害响应性细菌基于细菌的自我修复纤维(以下称为生物纤维),可以将其掺入混凝土中以同时启用两个功能:(1)裂纹桥接功能以控制裂纹生长和(2)发生裂纹时发生裂纹愈合功能的裂纹功能。生物纤维由承载核心纤维,含细菌水凝胶的鞘和外部不渗透应变反应性壳涂层组成。即时浸泡制造过程与多个含有含细菌的,亲水性的前聚合物和交联试剂的储层一起使用,以开发生物纤维。亚硫酸钠用作前聚合物,通过核纤维上的离子交联产生钙藻酸盐水凝胶。在水凝胶中掺入了脂肪菌的休眠细菌(孢子)作为自我修复剂。然后,将不可渗透的聚合物涂层应用于水凝胶涂层的核纤维。使用聚苯乙烯和聚乳酸的聚合物混合物制造了不可渗透的应变反应性壳涂层材料。在这项研究中,高钙钙酸钙的高肿胀能力提供了微生物诱导的碳酸钙沉淀(MICP)化学途径所需的水。应变反应不足的涂层在混凝土铸造过程中提供了足够的柔韧性,以保护孢子和藻酸盐,并在破裂和足够的应力应变行为之前,以在发生裂缝时赋予损害反应性以激活MICP。研究了开发的生物纤维的行为,水凝胶的肿胀能力,壳涂层的不渗透性,孢子铸造的生存能力和MICP活性。