摘要:纳米囊化已成为药物输送,增强稳定性,生物利用度以及使受控的,有针对性物质递送到特定细胞或组织的最新进展。但是,传统的纳米颗粒交付面临诸如短期流通时间和免疫识别之类的挑战。为了解决这些问题,已建议将细胞膜包被的纳米颗粒作为实际替代方法。生产过程涉及三个主要阶段:细胞裂解和膜破碎,膜分离和纳米颗粒涂层。细胞膜通常使用均匀化或超声处理的低渗裂解来碎片。随后的膜片段通过多个离心步骤隔离。可以通过挤出,超声处理或两种方法组合来实现涂层纳米颗粒。值得注意的是,该分析揭示了缺乏普遍适用的纳米颗粒涂层方法,因为这三个阶段的程序在其程序上有显着差异。本综述探讨了当前的开发和细胞膜包裹的纳米颗粒的方法,强调了它们作为靶向药物递送和各种治疗应用的有效替代方案的潜力。
以非侵入性和定量的方式在体内实时追踪细胞、分子和药物是当代医学的优先需求,用于阐明细胞功能、监测病理过程和制定有效的治疗策略。[1] 在现有的诊断技术中,基于质子的磁共振成像( 1 H-MRI)在对软组织进行成像方面表现良好,没有深度限制,可以提供高分辨率、解剖和功能信息,而无需使用电离辐射和放射性核素。 [2] 为了进一步增强 MRI 对比度,通常使用钆或氧化铁基探针进行诊断,但它们的敏感性和特异性有限,并且其安全性仍存在争议,因为经常有毁灭性的晚期不良反应被报道或仍有待研究。 [3] 作为这些造影剂的替代品,基于氟化( 19 F)化合物的替代品正变得越来越有前景,由于 19 F 具有高旋磁比,且体内背景可忽略不计,因此可提供“热点”成像功能。 [4] 因此,氟化探针在给药后可以直接检测并以高选择性进行定量分析,特别是当它们含有多种磁当量的 19 F 原子时,最近报道的超氟化分子探针 PERFECTA 就是这种情况(图 1)。 [5] 尽管 PERFECTA 具有尖锐的 19 F 单线态共振峰和合适的弛豫特性,但它显然不溶于水,对于生物医学应用,需要通过脂质乳化剂将其分散在水介质中,或封装到聚合物纳米颗粒或胶束中。 [5,6]
新的光学特性在光热疗法、比色传感、生物成像和光电子学中具有潜在的应用。[1–8] 在过去二十年中,随着 GNR 合成方法的不断改进,[9,10] 人们开发出了许多用于排列和组装 GNR 的技术,从而获得了新的光学特性。[11] GNR 具有纵向和横向表面等离子体共振 (LSPR 和 TSPR),当光的电场分别沿长度和直径方向取向时,会激发这些共振。LSPR 比 TSPR 更强烈,LSPR 的波长取决于纳米棒的长宽比,从而可以调谐到近红外光谱。 GNR 的取向可以选择性地激发 LSPR 或 TSPR,目前已通过拉伸聚合物薄膜[12–14] 静电纺丝聚合物纤维[15,16] 控制蒸发介导沉积[17,18] 模板沉积[19–23] 皱纹辅助组装[24] 机械刷[25] 和液晶分散[26–31] 等方法实现。尽管其中一些取向技术可以提供高度有序性,但利用施加的磁场或电场对分散在液体中的 GNR 进行动态取向的能力因其速度和可逆性而颇具吸引力。利用电场对 GNR 进行取向,
Nahyun Shin、Moonsu Kim、Jaeyun Ha、Yong-Tae Kim、Jinsub Choi。柔性阳极 SnO2 纳米多孔结构均匀涂覆聚苯胺,作为锂离子电池的无粘合剂阳极。《电分析化学杂志》,2022 年,914,第 116296 页。�10.1016/j.jelechem.2022.116296�。�hal-03688072�
然而,令人印象深刻的高 PCE 是使用氮气中不可升级的旋涂法从小面积电池(< 1 cm 2 )获得的。[1–3] 为了使 PSC 具有商业可行性,开发在环境空气中低成本大面积制造工艺势在必行。工业上可用于大面积涂覆的许多工艺,例如浸涂、刮刀涂覆和狭缝模涂覆等。其中,狭缝模涂覆是优选的,因为它可以精确控制涂层厚度和溶液使用量(即材料浪费最少)。[4–7] 狭缝模涂覆也适合用于连续工艺,这可以进一步降低制造成本。高性能 PSC 已经通过刮刀涂覆、狭缝模涂覆和喷涂等可扩展工艺制造出来。[8–14] 然而,大多数研究集中在受控环境下的钙钛矿层处理。关于在环境空气中操作的可扩展工艺的报道有限。 [15–18] 常用的 pin 型 PSC 结构包含通过溶液工艺沉积的四层,这四层包括空穴传输层 (HTL)、光吸收钙钛矿层、电子传输层 (ETL) 和功函数调节层 (WFL)。首先,为实现可扩展的工艺,每层加工过程中使用的所有溶剂都应无毒。[19–21] 然后,在每层的合适化学组成、溶剂类型、薄膜形貌控制、层间兼容性、每层的稳定性之间的平衡以拥有可行的环境空气处理系统在科学和工程方面都是相当具有挑战性的。PSC 每层的薄膜形貌和兼容性由每层的化学组成和工艺条件控制。对于钙钛矿层,薄膜形貌由溶剂蒸发和结晶的动力学速率决定。[22–23] 对于旋涂,大多数溶剂通过涂布机旋转和反溶剂滴落迅速去除。 [24] 但狭缝涂布的溶剂挥发速度低于旋涂。[17,25–26] 采用反溶剂浴、气体淬火和预热基片法等策略来增加溶剂挥发速度。[11,27–31] 虽然可以实现高PCE器件,但结果仅限于小面积基片。如果
增强弹力织物的压缩力 Performax ™ 4388 是一种可拉伸的水性化合物,具有出色的拉伸恢复性、耐磨性、柔韧性和柔软度平衡,可增强塑身衣、牛仔服、瑜伽裤、矫形织物和其他要求严苛的应用中使用的弹力织物的压缩力。这种即用型聚氨酯涂层可形成柔软、有弹性的薄膜,对棉、涤纶、尼龙及其混纺等多种基材有出色的附着力。Performax 4388 可使用所有传统技术进行涂覆,例如刮刀、迈耶棒、轮转丝网和凹版印刷,以及精密喷涂和功能性数码印刷方法。根据性能要求,可涂覆单层或多层化合物涂层,以达到所需的性能水平。
免责声明:据我们所知,本文件中的信息是正确和准确的。它是善意给出的,但不提供任何保证。用户必须自行确定我们的产品是否适合其特定用途。在任何情况下,Rust-Oleum Europe 均不对间接或附带损害负责。产品必须在符合 Rust-Oleum Europe 建议的条件下储存、处理和使用,如最新更新的产品数据表中所述。用户有责任确保他们拥有最新更新的副本。最新更新的产品数据表副本可从 www.rust-oleum.eu 免费下载,或向我们的客户服务部索取。 Rust-Oleum Europe 保留更改其产品特性的权利,恕不另行通知。
图5:a)在基线时记录的平均保留力,以及在特定的插入拆除周期(23、270、540和1080)之后,在插入式循环后,定位器的保留率显着下降(p <0.05),而NovAloc重retentie则保持稳定。b)机械压缩循环后的平均保留力量等于1周,1、3、6和12个月的磨损。值得注意的是,定位器的附件在整个300,000周期的持续时间内显示出波动的保留力,而Novaloc系统在整个循环持续时间内显示出稳定的保留率。
为提高隔膜性能、降低热失控概率,在 PE/PP 膜上采用陶瓷颗粒(主要是氧化铝(Al 2 O 3 )颗粒)涂覆一层陶瓷层。涂覆的氧化铝层可防止隔膜在高温下发生故障,并阻止枝晶对隔膜的损坏。要求氧化铝必须足够纯净(通常纯度为 99.99%),因此金属阳离子杂质和金属杂质低于几 ppm。杂质可能会渗入电解液,并在电池运行过程中形成枝晶,或者形成加速枝晶形成的晶核。陶瓷层中的金属是短路的根源,无论是由原材料和制造过程引入的,还是在运行过程中形成的。陶瓷层中的杂质更有害,因为它靠近聚合物膜。
− 最简单的选择是将两种材料相互电绝缘。如果它们不电接触,就不会产生电偶。这可以通过在具有不同电势的金属之间使用非导电材料来实现。 − 可以使用防水化合物(例如油脂)或在金属上涂上不透水的保护层(例如合适的油漆、清漆或塑料)来防止与电解质接触。如果无法同时涂覆两种材料,则应将涂层应用于具有较高电极电位的材料。如果仅在活性更高的材料上涂覆涂层,则如果涂层受损,将产生较大的阴极面积,而对于暴露的非常小的阳极面积,腐蚀率将相应较高。 − 电镀或其他金属涂层也有帮助。通常使用更贵重的金属,因为它们更耐腐蚀。镀锌可通过牺牲阳极作用保护钢基体金属。