Henrik Stiesdal是现代风力行业的先驱,他于1976年建造了他的第一台风力涡轮机,并于1978年设计了最早的商业涡轮机之一。STIESDAL在1970年代末和1980年代初的最初作品为“丹麦概念”的简单和强大技术的发展做出了重大贡献。STIESDAL具有175多个发明,并获得了与风能技术有关的650多种专利。他在Odense的丹麦南部丹麦大学学习医学,物理和生物学。 在风能行业的40年中,他从事涡轮技术的各个方面,包括基础研究,涡轮设计,制造,销售,项目实施,服务和质量管理。他在Odense的丹麦南部丹麦大学学习医学,物理和生物学。在风能行业的40年中,他从事涡轮技术的各个方面,包括基础研究,涡轮设计,制造,销售,项目实施,服务和质量管理。
摘要:本文回顾了材料选择和设计在确保以氨-氢为燃料的燃气涡轮发动机高效性能和安全运行方面的关键作用。由于这些能源燃料在涡轮燃烧室中表现出独特的燃烧特性,因此确定合适的材料势在必行。详细的材料特性对于辨别涡轮部件中的缺陷和退化途径是必不可少的,从而照亮改进的途径。随着涡轮入口温度的升高,热降解和机械缺陷的敏感性增加,尤其是在高压涡轮叶片中,这是决定寿命的关键部件。本综述重点介绍了氨-氢燃料涡轮设计中的挑战,解决了氨腐蚀、氢脆和应力腐蚀开裂等问题。为了确保发动机的安全性和效率,本文提倡在材料开发和风险评估中利用先进的分析技术,强调技术进步、设备规格、操作标准和分析方法之间的相互作用。
自1970年代的构想以来,海上风能的利用在涡轮设计,材料和制造技术方面的进步驱动下,其构想的利用已经显着增长,从而使更大,更强大的涡轮机的发展,从而增加了越野风场风场的尺寸和容量。然而,离岸风电场面临的挑战是风力涡轮机之间的空气动力相互作用,其中从风中提取能量会导致风速降低和湍流增加,从而影响相邻的涡轮机的效率和生产力,从而导致实质性能量损失。为了应对这些挑战,已经开发了数值模型来量化和预测涡轮的相互作用效果,这些因素考虑了大气湍流,风速,风向和唤醒恢复等因素。但是,在风电场设计中使用的传统单曲模型过分简化了物理学,忽略了关键的身体影响,从而限制了它们对更大且更复杂的风电场的适用性。最近的研究强调了对高保真建模方法的需求,例如计算流体动力学(CFD)模拟以及中尺度大气建模(WRF),这些模拟(WRF)提供了更现实的涡轮相互作用效应的表示。这些高保真模型考虑了涡轮机与大气之间的耦合相互作用,并且验证研究表明它们在繁殖在操作风电场中观察到的功率生产模式方面的准确性。通过结合大气稳定性和远距离唤醒传播,这些模型提供了改进的预测,尤其是对于更大且更复杂的风电场配置。随着海上风能行业继续扩展,涵盖了前所未有的规模的项目,因此采用更高的涡轮互动模型至关重要,以确保对能源生产的准确评估并减轻与大型项目相关的风险。采用这些先进的建模方法,使海上风能行业可以优化风电场布局,最大化能源生产,并推动过渡到更可持续和更绿色的能源未来。