摘要 — 本研究提出了一种能够从零点能量 (ZPE) 场中提取能量的装置的理论公式和设计。通过整合霍金辐射、量子信息论和量子场论的原理,我们提出了一种新的能量提取机制。该装置具有一个事件视界模拟器和一个能量提取机制,旨在利用量子涨落,类似于黑洞附近的条件。我们通过严格的数学公式验证了该设计,包括 ZPE 的正则化技术以及与核聚变和裂变过程的相似性。此外,通过将封闭系统视为暗物质黑洞并采用非交换几何,该装置探索了物质和能量的奇异状态。这些先进的理论构造对于保持量子相干性和实现有效的能量提取至关重要。该设计采用了尖端材料和超导技术,量子信息处理确保遵守能量守恒。这项研究的潜在影响是巨大的,为能源生产提供了一种可持续的革命性方法。未来的技术进步和持续的研究对于实际实现至关重要,为未来能源技术的重大贡献铺平了道路。
1.2. 背景。随机环境中的定向聚合物是非平衡统计力学中无序系统的典型模型,自 20 世纪 80 年代以来得到了广泛的研究。在这里,我们不会试图回顾大量的文献,而是参考优秀的书籍 [ 19 ] 及其引用的参考文献。该模型的一个显着特征是在所谓的低温状态下的局部化现象,这是一种物理上有趣的状态,其中聚合物路径被限制在能量上有利的一小组状态中。在高温状态下,路径表现出与布朗运动相同的扩散性,这更容易分析。当温度较低时,路径预计会表现出超扩散性,同时局限于某个优选区域。虽然这种行为众所周知很难量化,但近年来数学研究取得了重要进展。这涉及端点位移和自由能涨落的研究,属于 1 + 1 KPZ 普适性类别 [ 2 , 5 , 6 , 11 , 12 , 13 , 14 , 25 , 26 , 28 , 37 , 38 , 40 , 41 ],也涉及局域化行为的定量分析 [ 4 , 8 , 9 , 10 , 16 , 18 , 20 , 21 , 22 , 23 , 29 ]。
史瓦西黑洞内部包含将其与类空奇点分隔开的测地线边界。任何跨越测地线边界向奇点迁移的信息都会因因果关系而不可挽回地丢失。如果史瓦西奇点吸收信息,则相应的演化将被视为悖论,因为它违反了信息处理的神圣规则 [1] 。人们通常认为时空涨落会变形其测地线边界附近的史瓦西几何,从而产生一致的量子演化。虽然这种动力学正则化机制的细节尚不清楚,但它们对于黑洞量子信息处理的整体方面(例如黑洞信息悖论 [2 – 4] )非常重要。在本文中,我们表明史瓦西奇点毗邻渐近静默时空区域,即无论初始场配置如何都会抑制空间量子关联的区域。更重要的是,它们适应所谓的 Zeno 边界,该边界标记了由测地线边界终止的超曲面堆栈,具有以下属性:在堆栈中填充量子信息的概率测度朝着奇点单调递减,并在测地线边界处消失。因此,量子事件无法探测测地线边界,量子信息也无法迁移
我的研究领域是声子、光子和极化子在纳米、微观和宏观材料中传播的热传输,应用于热极化子和热电子学(热计算)、电子学、光子学、热电学等。玻尔兹曼传输方程、麦克斯韦电磁方程和涨落电动力学是我在理论和实验上研究线性和非线性材料在稳态和动态条件下的热传输的主要工具。我的主要贡献分为三个方面:第一,预测新的物理效应和热器件的概念,例如纳米线和纳米薄膜中极化子热导的量化、热忆阻器、热波二极管和量子热晶体管。第二,开发了根据 3ω、时域热反射、光热辐射测量、热波谐振腔和光声学技术记录的实验数据拟合热性能的分析模型。第三,对由纳米颗粒或多孔材料组成的固体基质复合材料的热导率进行建模和测量。这三个研究方向主要针对极性材料(即 SiO 2 、SiN、SiC)、相变材料(即 VO 2 、镍钛诺)和介电材料(薄膜和导线形式)进行了开发。
热机通常通过与不同(正)温度的热浴交换热量来运行。然而,非热浴可能会显著提高性能。我们在这里通过实验分析了单原子量子奥托发动机的功率输出,该发动机是在单个铯原子的准自旋态与原子铷浴相互作用时实现的。通过测量准自旋态的时间分辨布居,我们确定了发动机有效自旋温度和量子涨落循环过程中的动态,并借助香农熵对其进行了量化。我们发现,在负温度范围内功率会增强,并且在最大熵的一半时达到最大值。从定量上讲,与在正温度下运行相比,在负有效温度下运行我们的发动机可将功率提高高达 30%,甚至在无限温度下也是如此。同时,进入负温度区可以将熵降低到接近零的值,从而在高功率输出下提供高度稳定的运行。此外,我们通过改变工作介质的能级数,以数值方式研究了希尔伯特空间的大小对量子引擎性能的影响。我们的工作为高功率和高效单原子量子引擎运行中的波动控制铺平了道路。
摘要:量子纠缠是保证量子通信绝对安全的重要因素。本文系统研究了基于电磁诱导透明(EIT)效应产生光场间的连续变量纠缠或双模压缩。本文提出了一种新方案,通过在EIT系统中引入双光子失谐来增强相干态光探测场和耦合场之间的纠缠度。与传统方案相比,该方案利用基态弛豫(布居衰减或失相)率来产生纠缠或双模压缩,从而给系统带来更多的过剩涨落或噪声,效率更高。此外,在给定光学深度下,可以在较宽的耦合Rabi频率和双光子失谐范围内实现最大纠缠度,表明该方案稳健且灵活。值得注意的是,虽然 EIT 是微扰极限下的效应,即探测场比耦合场弱得多并被视为微扰,但存在探测场与耦合场强度的最佳比率以实现最大纠缠。我们提出的方案可以推进基于连续变量的量子技术,并可能在利用压缩光的量子通信中得到应用。
信息论与热力学相结合的研究领域的起源可以追溯到麦克斯韦的思想实验“麦克斯韦妖”[1]。这一概念可以表述为,通过基于热涨落水平测量的反馈控制来减少系统的总熵[2][3],这似乎与热力学第二定律相矛盾[4][2][3]。关于这个问题的理论讨论在过去十几年里进展迅速[2],具体地说,已经发现将信息的概念[5][6]纳入非平衡统计力学[7][8][9]的研究结果中,可以完全准确地理解“妖”与热力学第二定律[2][5]之间的一致性。此外,对“妖”的研究实验最近也开始取得进展[2]。具体而言,“妖怪”实际上已经通过实验实现[10],这得益于测量微观热力学系统并通过反馈控制它们的实验技术的进步[2][3][10]。这样,将信息论与热力学相结合的研究形成了新的研究领域,可以称之为信息热力学[5][11][12]。信息热力学的研究不仅解决了“麦克斯韦妖怪”的问题,还揭示了更加丰富的发现[2]。例如,人们发现“妖怪”所能获取的功的上限和测量所需能量消耗的理论下限都与“信息量”定量相关[12]。本综述旨在最简洁地介绍信息热力学。本综述组织如下:后で付け足す我们只考虑经典系统[13]。
有成熟的理论工具可以分析量子动力学如何通过在绝热极限附近缓慢改变汉密尔顿量参数来解决计算问题。另一方面,很少有工具可以理解快速淬灭的相反极限,如量子退火和量子行走(在无限快速淬灭的极限下)中使用的工具。在本文中,我们开发了几种适用于快速淬灭机制的工具。首先,我们分析了汉密尔顿量不同元素的能量期望值。由此,我们表明,单调淬灭(问题汉密尔顿量的强度相对于涨落(驱动)项持续增加)平均会产生比随机猜测更好的结果。其次,我们开发了一些方法来确定在快速淬灭汉密尔顿量下是否会局部发生动力学,并确定快速淬灭会导致解决方案大幅改进的情况。具体来说,我们发现一种称为“预退火”的技术可以显著提高量子行走的性能。我们还展示了这些工具如何为汉密尔顿参数提供有效的启发式估计,这是量子退火实际应用的一个关键要求。
少量子比特量子逻辑门作为构造通用多量子比特门的基本单元,在量子计算和量子信息领域得到广泛应用。然而,传统的少量子比特门构造通常采用多脉冲协议,这不可避免地会在门执行过程中出现严重的内在错误。本文报告了一种通用二和三量子比特CNOT门的最优模型,该模型通过激发到具有易实现的范德华相互作用的里德堡态来实现。该门依赖于全局优化,通过遗传算法实现幅度和相位调制脉冲,从而可以用更少的光脉冲实现门操作。与传统的多脉冲分段方案相比,我们的门可以通过同时将原子激发到里德堡态来实现,从而节省了在不同空间位置进行多脉冲切换的时间。我们的数值模拟表明,当排除里德堡相互作用的涨落时,可以实现单脉冲两(三)量子比特CNOT门,对于相距7.10μm的两个量子比特,保真度可达99.23%(90.39%)。我们的工作有望在中性原子量子技术研究中实现快速便捷的多量子比特量子计算。
Horowitz 等人使用图论方法提供了描述自主系统中信息传输的统一热力学方案。[9 ] Yamamoto 引入了图收缩法,证明了与信息流驱动相关的 Onsager 系数满足 Onsager 互易性。[10 ] 图论概念在学习纳米级能量、[11,12 ] 熵、涨落[13 ] 和信息的不可逆热力学方面取得了巨大成功。[14,15 ] Peusner 结合非平衡热力学、电路理论和图论,发展了网络热力学,以拓展其在生物系统中的适用性。 [ 16 – 22 ] 应用图论和网络热力学分析量子系统中的环通量、边通量和能量传输过程,可以指导热纳米器件的设计。一方面,许多研究关注不可逆热力学的自由能形式。Crooks 在微观可逆马尔可夫系统上进行了非平衡态自由能差异与功的测量。[ 23 , 24 ] Jarzynski 关系将两种状态之间的自由能差异与连接相同状态的一系列轨迹上的不可逆功联系起来,常用于计算经典系统和量子系统的平衡自由能。[ 25 – 28 ] Esposito 引入了非平衡系统自由能的概念来理解不可逆功