• DC-DC 转换器对 BESS 进行充电/放电控制,并将其电压提升至公共 DC 链路,以便 AC-DC 转换器可以作为 DC 链路和更大电力系统之间的直接接口。
钒液流电池 (VFB) 是一种固定式储能技术,由于其独特的优势,例如独立于功率和能量的尺寸、无爆炸或火灾风险以及极长的使用寿命,可以在可再生能源融入电网中发挥关键作用。本文的第一部分介绍了 VFB 的主要特征和基本性能参数,这些参数决定了它们的电气、液压、热学和老化特性。后半部分概述了该技术的优缺点、它可以为电网提供的服务以及简短的经济分析。在介绍该技术的基础之后,概述了 VFB 部署的前景和趋势。本文强调的大部分考虑因素都受到在意大利帕多瓦大学电化学能量存储和转换实验室 (EESCoLab) 运行的工业规模 VFB 上进行的研究的启发。
摘要:本文对用于太阳能屋顶储能系统的钒氧化还原液流电池 (VRFB) 进行了分析。VRFB 由太阳能供电系统充电,该系统为住宅负载供电。住宅负载的总使用能量周期变化为 11.26 kWh/天。利用巴吞他尼府的年太阳辐射曲线来分析和评估储能系统的效率和能力。模拟结果表明,未满足的电力负荷值为 0 kWh/年,过剩电力为 1,337 kWh/年。这些结果表明系统的效率和钒氧化还原液流电池储能系统的性能稳定可靠。带有 VRFB 的光伏系统可以持续向负载放电。
液流电池的规模经济和技术发展尚未达到与锂离子电池相同的成熟度,后者已成为电动汽车和消费电子产品等便携式应用的普遍电源。然而,由于太阳能和风能已超越煤炭和天然气成为最便宜的能源,对支持间歇性可再生能源的固定储能系统的需求正在增加。液流电池因其可扩展性和耐用性而成为一种有吸引力的选择。
溶液中:[Fe(CN) 6 ] 3- + ½S 2 2- = [Fe(CN) 6 ] 4- + S ↓ (7) 溶液中:[Fe(CN) 6 ] 3- + ½ S 2- = [Fe(CN) 6 ] 4- + ½ S ↓ (8) 尽管如此,即使是离子选择性膜,其能够维持的电荷选择性也存在唐南排除极限。例如,当量为 1200 g/mol H + 的 Nafion 在与浓度超过 1 M 的 HCl 溶液接触时,氯离子会明显渗透 [20]。对于其他阴离子,Nafion 及其类似物通常也能保持电荷选择性,直至约 1 M [21-25],并且它们可以减缓溶液中的寄生反应(即不会产生通过电池的电流)(6)以及其他潜在的副反应。然而,在电活性阴离子浓度较高时,交叉现象变得明显。在硫化物-铁氰化物氧化还原电池 (4) 和 (5) 的具体示例中,总溶解硫浓度为 2.0 M(在 0.1 M LiOH 中),总溶解铁氰化物络合物浓度为 0.3 M(也在 0.1 M LiOH 中),硫沉积物形成在 Nafion 117 膜的正极(铁氰化物)侧 [10]。
Kemiwatt 开发水合有机氧化液流电池基于蒽醌的阳极电解液(专有分子)堆栈设计和组装电解质回收无需重金属安全(无热失控问题)
摘要:本文对用于太阳能屋顶储能系统的钒氧化还原液流电池 (VRFB) 进行了分析。VRFB 由太阳能供电系统充电,该系统为住宅负载供电。住宅负载的总使用能量周期变化为 11.26 kWh/天。利用巴吞他尼府的年太阳辐射曲线来分析和评估储能系统的效率和能力。模拟结果表明,未满足的电力负荷值为 0 kWh/年,过剩电力为 1,337 kWh/年。这些结果表明系统的效率和钒氧化还原液流电池储能系统的性能稳定可靠。带有 VRFB 的光伏系统可以持续向负载放电。
所有因素至少取决于参与反应的物质的浓度,从而导致电池的典型非线性充电和放电曲线。对于 VRFB,这意味着充满电的电池的开路电压约为 1.6 V,放电状态下约为 0.8 V。充电和放电过程的速度直接取决于电流。但是,电池总是有极限,出于各种原因,这些极限不能超过。对于 VRFB,与所有基于水性电解质的电池一样,充电电压受水的电化学稳定性限制。根据电极材料和 pH 值,水在特定电位下分解为氢和氧。在铂电极(标准电位)处,电位差为 1.23 V。因此,除了成本之外,使用这种电极的 VRFB 甚至无法以合理的效率充电半满,因为在充电过程中会产生越来越多的氢和氧。不幸的是,其他金属
数据汇编自:Applied Energy 274 (2020) 115213、10.1016/j.apenergy.2014.09.081 储能成本和性能数据库 https://www.pnnl.gov/ESGC-cost-performance Largo Clean Energy,https://www.largocleanenergy.com/products