一系列卡宾-金-乙炔配合物 [(BiCAAC)AuCC] n C 6 H 5 − n ( n = 1,Au1;n = 2,Au2;n = 3,Au3;BiCAAC = 双环(烷基)(氨基)卡宾) 已被高产率合成。化合物 Au1–Au3 呈现深蓝色至蓝绿色磷光,在所有介质中量子产率高达 43%。金配合物 Au1–Au3 中 (BiCAAC)Au 部分的增加会增加紫外可见光谱中的消光系数和更强的振子强度系数,理论计算支持这一点。发光辐射速率随着 (BiCAAC)Au 部分的增加而降低。时间相关密度泛函理论研究支持磷光的电荷转移性质,这是因为单重态(S 1 )和三重态(T 1 )之间的能隙很大(0.5–0.6 eV)。瞬态发光研究揭示了非结构化紫外瞬时荧光和 428 nm 振动分辨长寿命磷光的存在。有机发光二极管 (OLED) 采用物理气相沉积法制成,以 2,8-双(二苯基磷酰基)二苯并[b,d]呋喃 (PPF) 作为主体材料,与复合物 Au1 反应。在 405 nm 处观察到近紫外电致发光,器件效率为 1%,同时在 10 尼特的实际亮度下 OLED 器件寿命 LT 50 长达 20 分钟,表明一类非常有前景的材料可用于开发稳定的紫外 OLED。
图 E 1 强化学习问题和悬崖世界环境。 (A) 代理(这里是小鸟)与世界互动以最大化奖励。 这涉及探索可能有趣的新状态(例如在新田野中寻找食物)与利用已知可产生高奖励的状态(例如昨天有很多虫子的田野)之间的平衡。 在给定的时间点,小鸟处于某个状态 st ,它可以从该状态 st 采取行动 at ,不同行动的概率由代理控制的“策略”π(a | st)决定。 然后,at 会导致环境根据不可控环境动态 st + 1 , rt ∼ p(s,r | st,at)发生变化。 这里,rt 是代理收到的经验“奖励”,其目标是收集尽可能多的累积奖励。强化学习问题通常分为“情节”,代理在多次重复接触环境的过程中进行学习。例如,这可能包括鸟类在多天内学习哪些田地可能富含食物,同时尽量减少行进距离和暴露于捕食者。(B)“悬崖世界”环境,将用于展示本研究中一系列强化学习算法的性能和行为。代理从左下角(位置 [0, 0])开始,当遇到“悬崖”(深蓝色)或目标(黄色;位置 [9,0])时,情节结束。如果代理走出悬崖,它将获得 -100 的奖励。如果它找到目标,它将获得 +50 的奖励。在任何其他状态下,它将获得 -1 的奖励。这种对“中性”行为的负面奖励通常用于鼓励代理尽快实现其目标。箭头表示“最佳”策略,该策略让代理通过避开悬崖的最短路线到达目标。
尽管人口不断增长,并且主要能源需求的增加,但为了抵消全球气候变化,对节能和能够维持的技术的需求是增加优先级。[1,2]由于它们的多样性和多功能性,过渡金属氧化物在能源相关的应用中起着核心作用[3-7],例如锂离子电池,超级电容器,照相和电含量和电载体或电元素或电代理(EC)设备。[8-17]为了稳定氧化物针对不希望的侧反应,可以使用薄的惰性保护层,如所示,例如,用于锂离子蝙蝠中的阴极材料。[18–21] EC设备具有在建筑业节能中发挥关键作用的潜力,该建筑业占欧洲能源征服的42%。[22,23]为此,电铬效应用于所谓的智能窗口。电色素是基于外部电压刺激的光吸收的可逆变化,这会导致(脱)对EC材料中电位的(例如H +,Li +或Na +)的(例如H +,Li +或Na +)的氧化还原反应。结果,材料中发生的着色或漂白过程。通常,EC材料可以分为两种不同类型。一种类型由所谓的阳极EC材料表示,其中离子的去分离会导致着色。其中包括Ni或IR的氧化物。[24]另一种类型是由阴极EC材料表示的。它们在离子插入时表现出着色。典型的代表是MOO 3或WO 3。氧化钨氧化物可以被视为最概述的EC材料,从那以后,它一直受到密集研究。[25–27]其阴极EC机制在离子插入时产生强烈的着色。因此,光态调节从不透明到深蓝色。根据
104. Dinky Toy 赛车,230 Talbot Lago,232 Alfa Romeo,233 Cooper-Bristol,235 H.W.M,原装盒装,VG-E,司机头部部分修饰,235 更换轮胎,盒装 P-F (4) £80-120 105. Dinky Toys 40h/254 Austin Taxis,三辆,第一款双色版,黄色上部车身和轮毂,深绿色下部车身,第二辆深蓝色车身,黑色内饰,浅蓝色轮毂,第三辆黑色车身,旋转轮毂,原装盒装,VG-E,第一款和第二款部分修饰,盒装 P-F (2) £80-120 106. Dinky Toys 143 Ford Capri,绿松石色车身,白色车顶,红色内饰,旋转轮毂,155 Ford Anglia,绿松石色车身,红色内饰,旋转轮毂,原装盒子,VG-E,143 号牌漆成黑色,盒子 F-VG(2)60-80 英镑 107. Dinky Toys 112 Austin Healey Sprite,红色车身,旋转轮毂,114 Triumph Spitfire,银色车身,红色内饰,女司机,旋转轮毂,原装盒子,VG-E,盒子 VG,112 带密封圈(2)60-80 英镑 108. Dinky Toys 174 Hudson Hornet,两个例子,第一个红色车身,奶油色车顶,米色轮毂,第二个黄色车身,灰色车顶,浅灰色轮毂,原装盒子,VG,第二个例子有轻微修饰,盒子 VG(2)60-80 英镑 109. Dinky Toys 177 Opel Kapitan,浅灰蓝色,红色内饰,旋转轮毂,186 Mercedes-Benz 220SE,浅蓝色车身,灰白色内饰,旋转轮毂,原装盒,E,盒 F-G (2) 60-80 英镑
摘要 关键信息 首次通过 CRISPR/Cas9 介导的淀粉分支酶基因 SBE2 诱变生产高直链淀粉木薯。摘要 高直链淀粉木薯 ( Manihot esculenta Crantz) 适用于淀粉工业应用和生产供人类食用的更健康的加工食品。在本研究中,我们报告了通过 CRISPR/Cas9 介导的淀粉分支酶 2 (SBE2) 诱变生产高直链淀粉木薯。在所有再生植物中均发现了 SBE2 两个目标外显子的突变;这些突变包括核苷酸插入以及 SBE2 基因中的短或长缺失,被分为 8 个突变系。三个突变体 M6、M7 和 M8 在 SBE2 的第二个外显子中有长片段缺失,没有表现出 SBE2 蛋白的积累。从田间收获后,与野生型相比,这些突变体中的直链淀粉(表观直链淀粉含量高达 56%)和抗性淀粉(高达 35%)含量明显较高,导致快速碘染色后淀粉颗粒呈现深蓝色,淀粉粘度改变,糊化温度和峰值时间更高。进一步的 1 H-NMR 分析表明,淀粉支链度显著降低,支链淀粉的短链减少(聚合度 [DP] 15–25),长链增加(DP>25,尤其是 DP>40),这表明木薯 SBE2 在支链淀粉生物合成过程中催化短链的形成。在淀粉中还检测到了从 A 型到 B 型晶体的转变。我们的研究表明,CRISPR/Cas9 介导的木薯淀粉生物合成基因诱变是产生具有有价值的淀粉特性用于食品和工业应用的新品种的有效方法。
(A) 果蝇 (Drosophila melanogaster) 和菠萝蜜 (D. ananassae) 中 Myc 基因组邻域的同源性比较。细箭头表示果蝇 (D. melanogaster) (顶部) 和菠萝蜜 (D. ananassae) (底部) 中目标基因 Myc 所在的 DNA 链。指向右侧的细箭头表示 Myc 在菠萝蜜 (D. ananassae) 和果蝇 (D.melanogaster) 中位于正 (+) 链上。指向与 Myc 相同方向的宽基因箭头相对于细箭头位于同一链上,而指向 Myc 相反方向的宽基因箭头相对于细箭头位于相反链上。果蝇 (D. ananassae) 中的白色基因箭头表示与果蝇 (D. melanogaster) 中相应基因的直系同源性。 D. ananassae 基因箭头中给出的基因符号表示 D. melanogaster 中的直系同源基因,而基因座标识符特定于 D. ananassae。(B)GEP UCSC Track Data Hub 中的基因模型(Raney 等人,2014 年)。D. ananassae 中 Myc 的编码区显示在用户提供的 Track(黑色)中;CDS 用粗矩形表示,内含子用细线表示,箭头表示转录方向。后续证据轨迹包括 NCBI RefSeq 基因的 BLAT 比对(深蓝色,D. ananassae 的 Ref-Seq 基因比对)、D. melanogaster 蛋白质的 Spaln(紫色,D. melanogaster 的 Ref-Seq 蛋白质比对)、TransDecoder 预测的转录本和编码区(深绿色)、成年雌性、成年雄性和沃尔巴克氏体治愈胚胎的 RNA-Seq(分别为红色、浅蓝色和粉色;D. ananassae 的 Illumina RNA-Seq 读数比对)以及使用 D. ananassae RNA-Seq 由 regtools 预测的剪接点(Graveley 等人,2011;SRP006203、SRP007906;PRJNA257286、PRJNA388952)。显示的剪接点的读取深度 >1000,支持读取为红色。(C)果蝇 Myc-PB 的点图(x 轴)与
图1。基因组在Jaspar数据库35中列出的107个酵母转录因子(TF)的酵母转录因子结合(A)的映射(a),在蛋白质编码基因中,具有已知DNA序列基因的蛋白质编码基因中的TF结合位点的堆叠条形图描述了堆叠的条形图(绿色和黄色)。fiMO 36用于扫描结合位点,以了解阈值p <0.00025的基序(方法)。所有启动子的DNA序列(来自TSS的-400至+200 bps)均用作背景模型。(b)热图代表了178 TF与5467个启动子的二元结合事件,该启动子由无监督的K-均值聚集。黄色条代表结合和深蓝色无结合。(c)框图显示了面板1b的每个群集中在基因调节区域检测到的TF数量:cluster-I(1-40 TFS);群集II(10-65 TFS);集群III(32-137 TFS)。Welch t检验的结果以1C-1E显示。对此的显着性和所有后续数字均定义为-ns:> 0.05,*:0.05-0.01,**:0.01- 0.001,***:0.001-0.0001,****:p <= 0.0001。(d)显示了我们的TF结合簇(图1b)在TFIID和CR基因26中的分布。(e)框图显示了每个集群中启动子的NDR宽度。据报道,在5467个分析启动子37中,已有5237个NDR宽度。(f)基于结合事件的TF之间的相关性。群集图显示TF-TF相关性的层次聚类。先前建立的TF相互作用的示例以红色突出显示。相关值范围为-0.15至0.9。黑色突出显示的左上簇包含富含II基因的TF;黑色突出显示的中间簇包含富含簇III基因的TF。评估TF结合位点的DNA序列特异性,我们分析了
您会注意到,教职员工穿着多种颜色和设计的礼服,帽子和引擎盖。这些中世纪起源的学术服装是由美国教育理事会维护的统一法规指定的,具有来自美国学院学位的教师。帽子是黑色的,通常是带有流苏的砂浆板或TAM。哲学的医生通常穿金色的金属质量;那些具有其他学位的人穿着黑色或纪律颜色。那些从美国以外的机构中获得学位的人穿着奖励机构指定的富豪。医生的礼服饱满,袖子袖。正面与天鹅绒面板接壤,袖子标有三个天鹅绒杆。虽然有些礼服是黑色的,带有黑色天鹅绒,但一种变体是用纪律颜色中的天鹅绒代替黑色天鹅绒。第二个变化是通常是大学颜色的彩色礼服。所有引擎盖都规定了学位的水平,所研究的纪律类型和奖励机构。天鹅绒装饰的宽度传达了该度。此外,该度是由饰边的颜色指示的,以使引擎盖在礼服上形成喉咙。最常见的颜色是深蓝色,该颜色指定了哲学博士学位(博士)学位。最后,引擎盖衬里的颜色是特定于授予机构的。col-ors以从埃尔德里(Herdry)绘制的组合显示。请注意,克莱姆森大学的引擎盖衬有紫色,这是橙色的雪佛龙(A V)。尽管许多组合被数十个机构重复,但克莱姆森目前是唯一具有紫色和橙色组合的机构。官员,受托人和尊敬的客人穿着专业人士所提出的学术,教会或军事雷亚利亚。克莱姆森大学的校长穿着紫色的礼服,穿着橙色的四个天鹅绒酒吧,在面板上绣有大学印章。每个受托人都穿着类似的礼服,三个用橙色的天鹅绒酒吧为博士生,每个袖子上的绣花棕榈树,供那些不掌握博士学位的人。受托人引擎盖来自克莱姆森或奖励学校。
图1:IPSC衍生的NPC的产生,中风诱导和移植。(a)左:IPSC派生的NPC的生成。右:iPSCS和NPCS(通道7)染色为Nanog和Nestin。比例尺:50UM。(b)左:NPC的神经分化。右:分化后的D26(上排)分化的NPC,对βIII-微管蛋白,S100β和DAPI染色。比例尺:50UM。(c)实验设计的示意图。(d)通过激光多普勒成像(LDI)获得的脑灌注水平。(e)右半球的相对血液灌注与中风诱导后立即记录的基线(急性)和牺牲前(43 dpi)相比。(f)中风梗塞大小的定量。左:相对于勃雷格玛(MM),针对前后(A-P)距离绘制的病变区域。右:两个治疗组的病变体积(mm 3)的箱形图。(g)描绘中风梗塞大小的3-D小鼠脑模型的示意图。比例尺:2mm。(H)使用生物发光成像进行NPC移植后细胞存活的纵向分析。(i)生物发光信号强度表示为35天的SR X10 6的每秒3个光子数量。显示的显着性水平是指天之间的比较。(J)示意图和免疫荧光表示,描绘了移植核(深蓝色)和移植物周围(浅蓝色)。hunu用于可视化移植细胞。比例尺:1mm。比例尺:2mm。(k)脑切片对hunu染色,以前到后验(A-P)顺序排列。(l)量化移植物核心和移植物周围面积。左:相对于前核(MM),绘制在前后(A-P)距离的移植面积(mm 2)。右:移植动物的平均移植体积(mm 3)的箱形图。数据显示为平均分布,其中红点表示平均值。框图表示数据的25%至75%四分位数。箱形图:图中的每个点代表一种动物。线图被绘制为平均值±SEM。使用成对的t检验(基线与中风)或未配对的t检验(车辆与NPC)评估平均差异的显着性。在E-I中,每组n = 11只小鼠;在L,每组n = 9只动物。星号表示显着性: *p <0.05。
□ 登录您的“我的门户”帐户。 □ 单击屏幕顶部的“学生”选项卡。 □ 向下滚动并转到“学位作品”(屏幕左侧)。 □ “学位作品”在审计屏幕中打开。审计反映您选择的 De Anza 目标。 □ 单击“计划”选项卡以创建教育计划。 □ 单击“新计划”(屏幕右上方),然后选择“空白计划”,将打开“编辑”屏幕。 □ 为您的计划提供描述,例如:简略教育计划 - 历史(专业)。 □ 选中“活动”框。 □ 单击右上角的 (+) 符号以添加新学期。 □ 从屏幕右侧的“仍需”部分,您可以将课程直接拖放到教育计划中。例如,单击“通识教育要求”下拉列表,然后将课程拖放到学期标题栏上,它就会出现在计划中。 □ 可以在课程搜索功能下找到不适用于学位的课程,例如 MATH 212、ESL 263 等。单击位于所选季度下方的 (+) 符号,然后选择课程。 □ 单击搜索图标(放大镜)并输入您想要放入计划的“科目”:EWRT、MATH、HIST、ESL 等;然后从此滚动列表中选择您想要的特定课程。 德安扎学院教授的所有课程都以 5 个字符的格式显示在此列表中。示例:EWRT 1A 显示为 (D001A),MATH 114 显示为 MATH (D114)。Foothill 课程以字母 F 开头。 □ 如果需要,您可以向本学期添加更多课程,或选择一个新学期。 □ 完成 1-2 个季度计划后,请务必单击保存(右下角)。 *请定期点击保存按钮,因为如果您空闲,系统会超时。 □ 如果您收到错误消息,则很可能是学期或课程字段留空。单击空白字段,直到它变成深蓝色,然后单击 (-) 符号删除空白字段。□ 注意:要成为全日制学生,您必须至少注册 12 个单元。□ 注意:如果您选择“未决定”作为专业,您将无法创建教育计划。您可以在学期开始时在门户中选择专业。□ 成功!您现在可以注销 *** 保存 Ed 计划后,您将完成优先注册的最后一步。您的 Ed 计划是您为下一学期选择课程的指南。您仍然需要在指定的注册日期和时间当天或之后在门户中注册课程。
