近年来,许多飞机制造商都提出了基于触摸屏的创新驾驶舱概念。尽管具有大量优势,但此类解决方案在操作使用方面受到严重限制,特别是几乎不可能实现无需注视的交互,而且在湍流条件下使用触摸屏非常复杂。我们通过引入一种形状可变的触摸屏来研究物理特性对克服这些弱点的贡献,这种触摸屏提供了可供用户手部休息的褶皱。在模拟器中,在湍流和脑力负荷各不相同的驾驶条件下,对该表面进行了评估。结果表明,褶皱有助于通过稳定手臂和手部来减少体力消耗。这种物理特性还与驾驶任务中的更好表现以及对飞机系统状态的更好态势感知有关,最肯定的原因是折叠提供的形状具有更好的视觉特性(显著性),使得对它们的监控在注意力资源方面成本更低。
通过大气传播的光传播沿传播路径的反射指数(称为光湍流)影响。在大气表面层中,这些波动主要是由于温度和湿度变化的湍流混合。为了提高对光学湍流的理解和预测,提出了塞文河上方大气表面层的表征。气象数据是从传感器阵列中收集的,其中包括位于马里兰州Annapolis的滨水区准备盆地(38.98n,76.46W)的两个声音动态计和一个红外气体分析仪(IRGASON)(IRGASON)。这些仪器的位置位于水线上最多8米的距离上,以分析边界层的预测。阵列安排以优化仪器灯芯上的气流。使用风速,温度,压力和其他参数等特征,可以使用几种不同的方法来计算温度,湿度和折射率的结构参数。这些结构参数是估计激光传播的湍流效应的主要手段。可以从领域数据,诸如hu虫山谷(HV5/7)等湍流漏洞的评估或可以验证恒定的浮标层缩放(Monin-Obukhov)。本文介绍了有关设置,校准,传感器套件的安装以及收集数据的早期发现的工作。
本出版物所载的所有内容,包括但不限于所有数据、地图、文字、图像、图画、图表、照片、录像及数据或其他材料的汇编(统称“材料”)均受知识产权所规限。该等知识产权由香港特别行政区政府(统称“政府”)拥有或已获该等材料的知识产权拥有人特许政府处理该等材料,以供本出版物所载的所有用途。如将材料用于非商业用途,则须遵守“香港天文台出版物所载材料非商业用途使用条件”(可于以下网址查阅:https://www.hko.gov.hk/en/publica/non-commercialuse.htm)所列的所有条款和条件。此外,除非符合《香港天文台刊物资料商业用途使用条件》(可于 https://www.hko.gov.hk/en/publica/commercialuse.htm 查阅)所列的所有条款及条件,并取得香港天文台(下称“天文台”)代表政府的事先书面授权,否则严禁将资料用作商业用途。如有查询,请以电邮(mailbox@hko.gov.hk)或传真(+852 2311 9448)或邮寄方式与天文台联络。
本刊物所载的所有内容,包括但不限于所有数据、地图、文字、图像、图画、图表、照片、影片及数据或其他资料的汇编(统称“资料”)均受香港特别行政区政府(统称“政府”)所拥有或该等资料的知识产权拥有人已授权政府处理该等资料,以作本刊物所载的所有用途。资料作非商业用途时,须遵守“香港天文台刊物内资料作非商业用途使用条件”(可于以下网址查阅:https://www.hko.gov.hk/en/publica/non-commercialuse.htm)所列的所有条款和条件。此外,除非符合《香港天文台刊物内资料商业用途使用条件》(可于 https://www.hko.gov.hk/en/publica/commercialuse.htm 找到)所列的所有条款及条件,并取得香港天文台(下称“天文台”)代表政府的事先书面授权,否则严禁将资料用作商业用途。如有查询,请以电邮(mailbox@hko.gov.hk)或传真(+852 2311 9448)或邮寄方式与天文台联络。
牛津大学牛津大学牛津大学3PU的物理系; B普林斯顿大学,新泽西州普林斯顿大学天体物理科学系; 08544; C芝加哥大学天文学与天体物理学系,芝加哥,伊利诺伊州60637; D 14627年罗切斯特大学物理与天文学系; Rochester Univers,Rochester,纽约州罗切斯特大学激光Energetics E实验室; 14623年; F英国贝尔法斯特皇后大学贝尔法斯特皇后大学数学与物理学学院; G Central Laser设施,卢瑟福·阿普尔顿实验室,DIDCOT OX11 0QX,英国; h英国格拉斯哥G4 0NG的Strathclyde大学物理系;我的等离子科学与融合中心,马萨诸塞州剑桥,马萨诸塞州02139; J Argonne National Laboratory,Argonne,伊利诺伊州60439年Argonne National Laboratory J数学和计算机科学部; k Laboratoire pour l'iperized des laser Intenses,CNR,COMSARIAT``a l'' l日本大阪苏瓦大学大阪大学工程研究生院; M Lawrence Livermore国家实验室,Livermore,CA 94550; n理论Astrophysikalischer等离子体Forschungsgruppe,Max-Planck-institut f ur kernphysik,69029 Heidelberg,德国; o乌尔山国家科学技术研究所,乌尔桑44919,乌尔桑国家科学学院物理学系;内华达大学里诺大学的物理系89557
在本文中,我们研究了湍流环境下的对称性破缺。我们用两个例子展示了从对称状态到对称性破缺状态的转变:(1)随着流体层厚度的变化,二维流动向三维流动的转变;(2)随着磁雷诺数的变化,薄层流动中的发电机不稳定性。我们表明,这些例子具有相似的临界指数,但与平均场预测不同。临界行为可以与波动的乘法性质相关联,并且可以使用随机界面的统计特性结果在一定限度内进行预测。我们的结果表明,可能存在一类受乘法噪声控制的新型非平衡相变。
对为期 4 个月的滑翔机任务进行了分析,以评估亚热带北大西洋西部边界反气旋涡旋中的湍流耗散。涡旋(半径 < 60 公里)的核心低位势涡度在 100 至 450 米之间,最大径向速度为 0.5 ms21,罗斯贝数 < 20.1。湍流耗散是根据滑翔机飞行模型得出的垂直水速推断出来的。耗散在涡旋核心中受到抑制(< = 53 102 10 W kg21),在其下方增强(.102 9 W kg21)。升高的耗散与垂直速度和压力扰动的准周期结构相一致,表明内部波是耗散的驱动因素。启发式射线追踪近似法用于研究导致湍流耗散的波浪-涡旋相互作用。射线追踪模拟与两种可能导致耗散的波浪-涡旋相互作用相一致:近惯性波能量被涡旋的相对涡度捕获,或内部潮汐(在附近的大陆坡产生)进入涡旋剪切的临界层。后一种情况表明,表征海洋盆地西部边界的强烈中尺度场可能充当“漏墙”,控制内部潮汐向盆地内部传播。
这项工作证明了一种新型横向阵风发生器的可行性,该发生器能够产生可控的时变阵风,而不会增加流动设施大面积内的湍流水平。新的阵风发生器概念基于涡流发生器阵列 ( VGA ),该阵列沿着设施测试段的某一给定流向位置的一面墙壁布置。使用这种装置,可以在风洞中演示阶梯式阵风和幅度为自由流速度 5.7% 的正弦阵风。对于 10 m ∕ s 的自由流速度,正弦阵风在自由流方向上产生几乎纯谐振动,角度为 3.25 度,频率为 2 Hz。简化的涡流阵列模型被证明是设计新型阵风发生器的可行工具。本研究重点展示 VGA 阵风发生器的概念,同时将发生器的设计优化和阵风强度和均匀性的极限探索留待未来工作。
多年来,大气湍流一直是物理学和工程学领域的研究热点。当激光束在大气中传播时,它会受到散射、吸收和湍流等不同光学现象的影响。大气湍流效应是由折射率的变化引起的。不同大小的涡流会影响光波在大气中的传播。折射率的这些变化会导致传播的激光束产生不同的变化,如光束漂移、光束扩散和图像抖动。所有这些影响都会严重降低光束质量 (M 平方) 并降低系统在某些应用中的性能效率,包括自由空间光通信、激光雷达-激光雷达应用和定向能武器系统 [1- 5]。传统上,湍流由 Kolmogorov 模型类型定义。Kolmogorov 谱的幂律值为 11/3,用于描述高斯分布 [6]。许多光谱具有特定的内尺度和外尺度,如 Tatarskii 光谱、von Karman 光谱、Kolmogorov 光谱和广义修正光谱 [7]。本研究采用广义修正大气光谱模型。我们通过数值和分析方法执行高斯激光光束在不同传播距离下的传播行为。此外,我们还研究了一些参数对光束传播的影响。讨论了所有模拟结果,并将其与文献中的结果进行了比较。
AAOL-BC被用来进行实验,该实验试图测量激光束上的大气诱导的抖动。波前的激光束,该激光束在两架飞机之间在不同的高度和分离处繁殖。提出了用于提取湍流诱导抖动的数据处理程序,并使用所得的抖动和高阶波浪畸变来提取湍流参数,例如c n 2和r 0。使用这些各种方法的湍流数量与文献进行了比较。表明,在较低高度和大型飞机分离处收集的数据导致高达5μrad的倾斜到激光束。使用测得的大气诱导的抖动,提取了C N 2值,与文献中普遍存在的模型(例如HV57)融合在一起。使用高阶波前统计近似C n 2的值高于由于飞机周围的空气光学和空气声环境污染而导致的湍流模型所预测的值。