摘要本文旨在研究几种新型保存方法对存储期间湿konjac面条质量的影响。湿的konjac面条由konjac粉,大豆蛋白分离株和地瓜淀粉制备。通过单个酸(pH = 3)浸泡(CA组),酸浸泡和真空包装(CF组)以及碱性浸入,然后是巴氏灭菌和真空包装(CI组)。结果,CF和CI组可以很好地抑制在室温下(28±1°C)储存过程中微生物的生长8周。与对照组(CK)组相比,经过处理的湿konjac面条也具有稳定的感官质量,更好的气味和味道,并且具有更高的咀嚼性和弹性。与CI治疗相比,CF治疗在白色,感觉特征,纹理特性和产品的内部微观结构方面表现出更理想的性能。总而言之,使用酸浸泡和真空包装技术是确保湿konjac面条的预期货架的一种有效方法。这项技术还可以为企业提供一些理论和技术支持,以处理和生产湿的konjac面条和其他高水分食品。
摘要:在粒子理论计算、数值模型和积云参数化中,通常假设湿静能 (MSE) 绝热守恒。然而,由于假设了流体静力平衡,MSE 的绝热守恒只是近似的。这里评估了两个替代变量:MSE 2 IB 和 MSE 1 KE,其中 IB 是浮力 (B) 的路径积分,KE 是动能。这两个变量都放宽了流体静力假设,并且比 MSE 更精确地守恒。本文量化了在无序和有序深对流的大涡模拟 (LES) 中假设上述变量守恒而导致的误差。结果表明,MSE 2 IB 和 MSE 1 KE 都比单独的 MSE 更好地预测沿轨迹的量。 MSE 2 IB 在孤立深对流中守恒较好,而 MSE 2 IB 和 MSE 1 KE 在飑线模拟中表现相当。这些结果可以通过飑线和孤立对流的压力扰动行为之间的差异来解释。当假设 MSE 2 IB 绝热守恒时,上升气流 B 诊断中的误差普遍最小化,但只有当考虑热容量的湿度依赖性和潜热的温度依赖性时才会如此。当使用不太准确的潜热和热容量公式时,由于补偿误差,MSE 2 IB 产生的 B 预测比 MSE 更差。我们的结果表明,各种应用都将受益于使用 MSE 2 IB 或 MSE 1 KE 代替具有适当公式化的热容量和潜热的 MSE。
alpes,ltm,Grenoble F-38054,法国 * erwine.pargon@cea.fr,Univ。Grenoble Alpes,CNRS,LTM,17 Rue des Mardyrs,38054 Cedex 09法国Grenoble,法国摘要摘要本研究提出了通过在上衣的室内饮用量的策略,该策略通过与上衣相结合的室友eTch fat Chip Chore to Chore Choh toper fore the toper the toper fore the notch facking Koh weats face face face the the gan支柱。的确,KOH溶液中的gan蚀刻是一个各向异性过程,这意味着它允许在宏观尺度上出现稳定的面,而原子过程(例如踩踏)驱动湿蚀刻的基本机制在微观尺度上驱动湿蚀刻的基本机制。我们的研究强调了形状(圆形或六角形,与M平板或A平板对齐)的关键作用,以及硬面膜在确定所得的结晶刻面形成及其相关的粗糙度方面的粗糙度。此外,它强调了等离子体图案后的GAN支柱剖面(重入,直,锥形)的重要性,因为它们会强烈影响随后的湿蚀刻机制。最终,该文章证明,可以通过在等离子蚀刻后在略微倾斜的GAN曲线上使用室温湿KOH(44 wt%)来实现平滑的M型面,并结合使用六边形M的Masks。
关键词 路径规划,粒子群优化,广义 PSO,光学避障,无人机,无人机编队。摘要 本文研究了多旋翼无人机(UAV)在编队形状中协作检查周围表面的路径规划技术问题。我们首先将问题描述为在复杂空间中规划编队质心路径的联合目标成本。然后提出了一种路径规划算法,称为广义粒子群优化算法,用于在避开障碍物并确保飞行任务要求的同时构建最佳的可飞行路径。然后结合路径开发方案为每架无人机生成相关路径以保持其在编队配置中的位置。进行了仿真、比较和实验以验证所提出的方法。结果表明,使用 GEPSO 的路径规划算法是可行的。缩写
摘要 BLM 是一种多功能解旋酶,在维持基因组稳定性方面起着关键作用。在 DNA 复制和修复的许多步骤中,它处理不同的 DNA 底物,但不处理缺口 DNA。然而,BLM 如何为各种功能做好准备仍然难以捉摸。在这里,使用组合单分子方法,我们发现当施加外部不稳定力时,大量 BLM 确实可以单向解开缺口的 dsDNA。令人惊讶的是,人类复制蛋白 A (hRPA) 不仅确保有限数量的 BLM 在减小的力下逐步解开缺口的 dsDNA,而且还允许 BLM 在完整和缺口的 ssDNA 上易位,从而产生双向解旋模式。这种激活需要 BLM 靶向缺口,并且溶液中存在游离 hRPA,而它们之间的直接相互作用是可有可无的。我们的研究结果展示了 BLM 的新型 DNA 解旋活性,这可能促进其在 DNA 修复中的功能转换。
1 过程与材料科学实验室(LSPM-CNRS UPR-3407),巴黎北索邦大学(USPN),93430 Villetaneuse,法国; anhnn@hus.edu.vn (信息来源); thanhhuyen.vltn@gmail.com(HTTN); valerie.bockelee@lspm.cnrs.fr (VB); frederic.schoenstein@univ-paris13.fr (FS) 2 越南科学技术院材料科学研究所,越南河内 Cau Giay 区 3 激光物理实验室(LPL-CNRS UMR-7538),巴黎北索邦大学(USPN),93430 Villetaneuse,法国; jeanne.solar d@univ-paris13.fr 4 Jean Lamour 研究所,UMR 7198 CNRS - 洛林大学 Artem 校区,54000 Nancy,法国 5 R&I 二氧化硅合成工程师,SOLVAY,92400 Courbevoie,法国; ch.benosman@gmail.com 6 巴塞罗那材料科学研究所(ICMAB-CSIC),UAB校区,08193 Bellaterra,西班牙; agomez@icmab.es(AG); msimon@icmab.es (MS-S.); anaesther@icmab.es (AEC) 7 PIMM、法国工艺学院、CNRS、Cnam、HESAM 大学,151 Boulevard de l'Hopital,75013 巴黎,法国; Sylvie.GIRAUL T@ensam.eu * 通信地址:silvana.mer cone@univ-paris13.fr
1 巴黎北索邦大学 (USPN) 材料科学实验室 (LSPM-CNRS UPR-3407), 93430 Villetaneuse, France; anhnn@hus.edu.vn (ANN); thanhhuyen.vltn@gmail.com (HTTN); valerie.bockelee@lspm.cnrs.fr (VB); frederic.schoenstein@univ-paris13.fr (FS) 2 越南科学技术研究院材料科学研究所,Cau Giay Distr.,河内,越南 3 激光物理实验室 (LPL-CNRS UMR-7538),巴黎北索邦大学 (USPN),93430 Villetaneuse,法国; jeanne.solard@univ-paris13.fr 4 Jean Lamour 研究所,UMR 7198 CNRS - 洛林大学 Artem 校区,54000 Nancy,法国 5 R&I 二氧化硅合成工程师,SOLVAY,92400 Courbevoie,法国; ch.benosman@gmail.com 6 巴塞罗那材料科学研究所 (ICMAB-CSIC),UAB 校区,08193 Bellaterra,西班牙; agomez@icmab.es (AG); msimon@icmab.es (MS-S.); anaesther@icmab.es (AEC) 7 PIMM,艺术与工艺学院,CNRS,Cnam,HESAM 大学,151 Boulevard de l'Hopital,75013 巴黎,法国; Sylvie.GIRAULT@ensam.eu * 通讯地址:silvana.mercone@univ-paris13.fr
旋翼飞机为探索外星环境提供了独特的功能。与诸如漫游者之类的勘探工具相比,旋翼船能够越来越快地到达感兴趣的目的地。此外,它们只需要合适的起飞和降落区,并且可以飞越由于障碍物或粗糙地形而可能无法遍历流浪者可能无法穿越的地形。这些优势激发了火星的创造任务,该任务涉及第一个飞行火星的旋翼飞机[1]。这项任务的成功继续激励未来的任务,例如可能使用直升机来返回火星样本[2]。设计一种在火星氛围环境中运行的首个旋翼飞机,需要进行设计,开发和操作的独特工具。在开发的工具中是Helicat-darts(简单地称为简洁的Helicat),用于旋转动力学建模和仿真。此仿真工具是指导,导航和控制(GNC)算法和软件开发的测试床,并作为分析飞行性能和动态的工具。Helicat在Ingenuity任务的整个生命周期中都使用,包括以下内容:
3澳大利亚悉尼西悉尼大学马克斯大脑,行为与发展研究所。4意大利帕维亚大学脑和行为科学系5劳拉托里尔·德·埃特德·德·德斯·德·梅卡尼斯主义认知,卢蒙·里昂大学2,法国里昂6,法国里昂6,心理学,大脑和认知系阿姆斯特丹,阿姆斯特丹大学,荷兰大学7集团7集团, Cérébrale,Inserm U1105,法国爱好8比较生物声学小组,Max Planck心理语言学研究所,6525 XD NIJMEGEN,9荷兰9号荷兰9号荷兰音乐中心,荷兰音乐中心,荷兰音乐中心,临床医学系,Aarhus University&Aarhus University&Aarhus/AARBORG皇家学院的临床医学系研究,研究了Marker and Marks and Marks -nmark 10。 UMR5022, Université de Bourgogne, Dijon, France *Shared first authors + Shared last authors Corresponding Author Anna Fiveash A.Fiveash@westernsydney.edu.au Western Sydney University The MARCS Institute for Brain, Behaviour and Development Westmead Innovation Quarter Building U, Level 4, 160 Hawkesbury Road Westmead NSW 2145 Australia Competing Interests Statement: The authors declare no竞争财务或非财务利益。摘要
量子计算技术的最新进展已导致嘈杂的中间量子量子计算机(NISQ 1)的实现,其性能出色。2–8但是,NISQ设备只是迈向实现量表的通用量子计算机的一半。这不可避免地需要支撑量子校正(QEC)的逻辑单元,9一个目标,其成就超出原理级别的成就似乎与当前的技术能力相距甚远。的确,基于多量表编码的标准QEC代码会大大增加物理量子和操作的数量,从而使对这种平台的控制非常苛刻。在这里,我们基于利用罪恶的多级对象来编码受错误保护的逻辑量子的基础,采用不同的方法。10
