EEV) 具 有流量调节范围大 、 反应迅速 、 控制精确等特点 [9] , 在定频机组中的应用愈发受到关注 [10] 。 郝文洋 等 [11] 利用电子膨胀阀代替毛细管作为恒温恒湿箱的 节流装置进行实验研究 , 发现改进后箱体温湿度控制
抽象的北极土壤经常受到空降,海洋或动物来源的微生物侵袭,这可能会影响当地的微生物群落和生态系统功能。然而,在冬季,北极土壤是从雪以外的外部来源分离出来的,这是微生物的唯一来源。通过雪微小的ISMS成功地殖民地殖民化,取决于入侵和居民社区的生存和竞争能力。使用浅shot弹枪元素测序和扩增子测序,本研究监测了整个雪融化的雪和土壤微生物群落,以研究北极土壤的定殖过程。由于观察到成功定殖的所有特征,因此可能发生微生物定植。源自雪的定植微生物已经适应了当地的环境条件,随后在北极土壤中经历了许多相似的条件。此外,与竞争相关的基因(例如运动和毒力)在雪样融化时在雪样中增加。总体而言,在土壤中发现了一百个潜在成功的殖民者,因此证明了熔融过程中土壤中雪微生物的沉积和生长。
摘要 - 卫星成像对湿积雪的检测目前是无监督的,由于难以在极端环境中收集地面真相,因此缺乏定量评估。在本文中,我们建议考虑与物理模型相关的信息,以使用合成孔径雷达(SAR)图像进行监督学习雪性能的目的。此数据集由Sentinel-1 SAR图像构造,并增强了从数字高程模型(DEM)获得的地形信息。使用Crocus物理雪模型在北阿尔卑斯山的规模上完成此数据的标签。然后,我们对标记数据集的13种组合进行了培训,这些数据集是广泛的机器学习模型,以定量确定湿积雪检测任务的最相关学习者。结果证明了不同算法之间的一致性,在将偏振法组合和地形方向数据纳入模型的输入中时,观察到了很大的改进。通过比较法国大型Rousses的验证区域上获得的湿雪地图与现有的哥白尼产品,分数雪覆盖(FSC)和SAR湿雪(SAR湿雪(SWS)),评估了在此数据集上训练的最佳算法解决方案。我们还比较了在测试区域的一个气象站获得的时间结果。结果显示,使用监督的学习方法,在熔融期间更好地表示湿积雪,以及在冬季被分类为湿的区域的减少。
雪况调查可以追溯到 20 世纪初。如今,雪况监测活动已经扩展到更多地区,技术进步使得这些测量更加精确。雪况监测可以为从短期径流到季节性供水预报等一系列预报提供信息,监测技术的进步可以带来预报效益。然而,雪况以及融雪径流的时间和规模仍然存在不确定性。这些不确定性在一定程度上反映了监测西部雪况的挑战,西部的地貌非常多样,有海拔超过 14,000 英尺的高峰、广阔的平原、高地沙漠和森林茂密的地区。在私人土地、荒野地区和人迹罕至的地区测量雪况可能具有挑战性。雪况本身的多变性质以及经常伴随雪况的极端寒冷可能对有效、可靠的雪况监测构成挑战。雪况测量可以从不同的平台进行,从地面到飞机和卫星,或者使用建模工具进行估算。每个平台和每种特定的雪监测技术都需要在成本、空间覆盖范围、时间覆盖范围、准确度、精确度、分辨率、地理适用性和可靠性之间进行权衡。
摘要:机载地面穿透雷达系统提供了一种安全且效率的方法,可在挑战性地形中测量雪深和积雪地层,并具有潜在的雪崩危险。雪花龙是一种定制的雪测量系统,其中包含一个未螺旋的航空车辆(UAV)平台和雷达有效载荷。专门设计用于在各种雪覆盖场景上进行雪调查,该系统具有针对此类任务的性能属性。在这里,我们介绍了完整系统的技术实施,再加上在Svalbard上进行的三个广泛的现场活动的验证结果。此外,我们还提供了对雪地无人机获得的雪地层测量结果的见解,并原位获得了雪轮剖分以进行比较分析。通过将雷达观测值与1673的共同位置测量降雪深度相关联,范围从5到200 cm,并揭示了高度的一致性,从而产生了r = 0.938的相关系数。雪花源是可靠有效的工具,可在坡度范围内协助当地的雪崩危险评估,其中有关积雪深度和结构的信息至关重要。