摘要 — 需要反复校准并考虑受试者间差异是脑机接口实际应用面临的主要挑战。由于病变导致的神经动力学改变,解码中风患者的脑信号时,问题变得更具挑战性。最近,几种深度学习架构应运而生,尽管与传统方法相比,它们往往无法产生更高的准确性,而且由于依赖于自定义功能,它们大多不遵循端到端架构。然而,其中一些架构具有以端到端方式创建更通用的功能的良好能力,例如流行的 EEGNet 架构。虽然 EEGNet 被用于解码中风患者的运动想象 (MI) 数据,但其性能与传统方法一样好。[1] 在本研究中,我们通过在基于滑动窗口的方法中引入一个称为最长连续重复 (LCR) 的后处理步骤来增强基于 EEGNet 的解码,并将其命名为 EEGNet+LCR。所提出的方法在 10 名偏瘫中风患者的 MI 数据集上进行了测试,结果表明,与唯一的 EEGNet 和更传统的方法(例如通用空间模式 (CSP)+支持向量机 (SVM))相比,该方法在 MI 信号内和跨受试者解码方面都表现出色。我们还观察到 EEGNet+LCR 在受试者内和跨受试者类别中的表现相当令人满意,这在文献中很少见,因此它有望成为实现实用的中风康复 BCI 的有希望的候选方案。
摘要 — 脑电图 (EEG) 信号的准确二元分类是开发运动想象 (MI) 脑机接口 (BCI) 系统的一项艰巨任务。本研究提出了两种滑动窗口技术来增强运动想象 (MI) 的二元分类。第一种方法计算所有滑动窗口预测序列的最长连续重复 (LCR),称为 SW-LCR。第二种方法计算所有滑动窗口预测序列的模式,称为 SW-Mode。公共空间模式 (CSP) 用于提取特征,线性判别分析 (LDA) 用于对每个时间窗口进行分类。SW-LCR 和 SW-Mode 都应用于公开可用的 BCI 竞赛 IV-2a 健康个体数据集和中风患者数据集。与现有的最先进技术相比,SW-LCR 在健康个体的情况下表现更好,SW-Mode 在左手与右手 MI 的中风患者数据集上表现更好,标准差更低。对于这两个数据集,分类准确率 (CA) 约为 80%,kappa (κ) 为 0.6。结果表明,使用 SW-LCR 和 SW-Mode 的基于滑动窗口的 MI 预测对于试验内激活时间的试验间和会话间不一致具有很强的鲁棒性,因此可以在神经康复 BCI 环境中实现可靠的性能。
在本文中,使用滑动窗口机理的混合方法,然后是模糊C,意味着针对自动化的脑肿瘤提取提出了聚类。所提出的方法包括三个阶段。第一阶段用于通过实施预处理技术,然后进行纹理特征提取和分类来检测肿瘤脑MR扫描。此外,此阶段还比较了不同分类器的性能。第二阶段由使用滑动窗口机理的肿瘤区域进行定位,其中大小的窗户扫描整个肿瘤MR扫描,窗户被归类为肿瘤或无肿瘤。第三阶段由模糊C组成,是指通过去除从阶段2获得的错误分类窗口来获得肿瘤的确切位置。2D单光谱解剖学特性MRI扫描被考虑进行实验。结果在灵敏度,特异性,准确性,骰子相似性系数方面表现出显着的结果。