摘要 — 需要反复校准并考虑受试者间差异是脑机接口实际应用面临的主要挑战。由于病变导致的神经动力学改变,解码中风患者的脑信号时,问题变得更具挑战性。最近,几种深度学习架构应运而生,尽管与传统方法相比,它们往往无法产生更高的准确性,而且由于依赖于自定义功能,它们大多不遵循端到端架构。然而,其中一些架构具有以端到端方式创建更通用的功能的良好能力,例如流行的 EEGNet 架构。虽然 EEGNet 被用于解码中风患者的运动想象 (MI) 数据,但其性能与传统方法一样好。[1] 在本研究中,我们通过在基于滑动窗口的方法中引入一个称为最长连续重复 (LCR) 的后处理步骤来增强基于 EEGNet 的解码,并将其命名为 EEGNet+LCR。所提出的方法在 10 名偏瘫中风患者的 MI 数据集上进行了测试,结果表明,与唯一的 EEGNet 和更传统的方法(例如通用空间模式 (CSP)+支持向量机 (SVM))相比,该方法在 MI 信号内和跨受试者解码方面都表现出色。我们还观察到 EEGNet+LCR 在受试者内和跨受试者类别中的表现相当令人满意,这在文献中很少见,因此它有望成为实现实用的中风康复 BCI 的有希望的候选方案。
主要关键词