Loading...
机构名称:
¥ 1.0

背景。脑机界面(BMI)是一种接收大脑信号的设备或实验设置,对其进行分类,然后将其用作计算机命令。对哪种学习方法(深度学习,卷积网络,AI等)尚无共识和/或每种方法中的算法类型最好运行BMI。目标。这项工作的目的是建立一个低成本,便携式,易于使用和可靠的电动图像电脑图(EEG-MI)的BMI;比较不同的算法,以找到最适合这种情况的算法。方法。在这项研究中,从Physionet公共数据和使用Emotiv头戴式耳机获得的Motor Imager(MI)EEG信号都与四种机器学习算法进行了分类。这些算法是:结合线性判别分析(LDA),深神经网络(DNN),卷积神经网络(CNN)和最终riemannian最小值(RMDM)的常见空间模式(CSP)。结果。每种方法的平均准确性分别为78%,66%,60%和80%。获得了基线与运动图像(MI)比较的最佳结果。随着全球培训公共数据的,获得了86.4%至99.9%的精度。 使用全球训练实验室数据,CSP和RMDM案例的精度高于99%。 对于实验室数据,每个事件的分类/预测计算时间分别为8.3 ms,18.1 ms,62 ms和9.9 ms。 在讨论中,可以找到此处介绍的结果与方法论的最新结果与BMI算法之间的比较。随着全球培训公共数据的,获得了86.4%至99.9%的精度。使用全球训练实验室数据,CSP和RMDM案例的精度高于99%。 对于实验室数据,每个事件的分类/预测计算时间分别为8.3 ms,18.1 ms,62 ms和9.9 ms。 在讨论中,可以找到此处介绍的结果与方法论的最新结果与BMI算法之间的比较。使用全球训练实验室数据,CSP和RMDM案例的精度高于99%。对于实验室数据,每个事件的分类/预测计算时间分别为8.3 ms,18.1 ms,62 ms和9.9 ms。在讨论中,可以找到此处介绍的结果与方法论的最新结果与BMI算法之间的比较。结论。CSP和RMDM算法产生了快速(计算时间)和有效的(成功率)工具,以实现为BMI中的深度学习算法。

使用机器学习的EEG运动图像分类...

使用机器学习的EEG运动图像分类...PDF文件第1页

使用机器学习的EEG运动图像分类...PDF文件第2页

使用机器学习的EEG运动图像分类...PDF文件第3页

使用机器学习的EEG运动图像分类...PDF文件第4页

使用机器学习的EEG运动图像分类...PDF文件第5页

相关文件推荐

2023 年
¥1.0
2024 年
¥1.0
2023 年
¥1.0
2020 年
¥1.0
2023 年
¥1.0
2020 年
¥1.0
2023 年
¥5.0
2021 年
¥2.0
2020 年
¥1.0