摘要 —脑机接口利用脑信号来控制外部设备,而无需实际控制行为。最近,语音意象已被研究用于使用语言进行直接交流。语音意象使用用户想象语音时产生的脑信号。与运动意象不同,语音意象仍然具有未知的特征。此外,脑电图具有复杂和非平稳特性,导致解码性能不足。此外,语音意象难以利用空间特征。在本研究中,我们设计了长度训练,使模型能够对一系列少量单词进行分类。此外,我们提出了分层卷积神经网络结构和损失函数以最大化训练策略。所提出的方法在语音意象分类中表现出竞争力。因此,我们证明了单词的长度是提高分类性能的线索。关键词-脑机接口;脑电图;语音意象;卷积神经网络