定位方法 GNSS 多星座(GPS、GALILEO 等)在开放频段与专有 IMU 自动驾驶仪姿态滚转控制和专有制导系统混合飞行控制机电驱动控制翼引信模式点起爆(PD)和延迟(D);近距(可选)
– 主动偏航控制:95% 误差为 7 度,超过所有 5 分钟时间窗口的 95%。 – 被动俯仰和滚转控制,典型误差为 +/- 2 度。 – 滚转、俯仰和偏航角度由姿态传感器测量,精度为 +/- 0.5 度。
PC-12:FAR 23.221(a)(2) 抗旋转 (FOCA CQF 91-03) – PC-12 不符合基本的 FAR 23 失速要求,并且安装了推杆器,性能令人满意。当接近失速(推杆)时,摇杆器和音频警告会通知飞行员。由于飞机无法失速,因此它无法旋转。皮拉图斯提议修改 23.221 旋转要求,以:在操纵杆推杆启动速度下(断开连接时)演示滚转控制;使用操纵杆推杆同时应用旋转促进控制偏转;如果可能超出结构限制,则停止测试。FOCA 接受了该提议,因为飞机在操纵杆推杆操作时被证明具有抗旋转性,并且系统的可靠性超过了要求值(参见问题文件 B-1)。
液压系统为表面执行器提供主要和备用液压。对于给定轴上的三个类似的运动反馈传感器故障,使用数字直接电气连接 (DEL) 模式完成控制,该模式提供从飞行员输入传感器到控制表面执行器的直接电气路径。如果三个数字处理器发生故障,则纵向和滚转控制通过对稳定器的备用机械模式完成。机械控制是传统的电缆、推杆和曲柄系统。在机械备用模式下,操纵杆到稳定器传动装置通过非线性连杆进行修改,以提供操纵杆力和偏转或所有飞行条件之间的所需灵敏度。在机械模式下,可通过模拟 DEL 路径控制副翼或方向舵。如果发生完全电气故障,则只能对稳定器进行机械控制。
摘要 进行了飞行动力学评估,以分析使用外襟翼进行滚转控制的能力。根据空客 A350 襟翼系统架构,外襟翼可以通过使用所谓的主动差动齿轮箱 (ADGB) 独立于内襟翼展开,两种不同的概念被认为可能有利于实现预期目的。在这两种概念中,为了减轻重量和降低系统复杂性,都拆除了内副翼,外襟翼与外(低速)副翼一起执行(全速)滚转控制。概念 1 包括通常的襟翼几何形状和外副翼,而概念 2 包括外襟翼,其沿翼展方向延伸了内副翼的长度。在所呈现的分析中未考虑滚转扰流板。飞行动力学评估表明,为了满足认证规范 CS-25 和操纵质量标准的要求,襟翼偏转率至少需要达到 16°/s。系统分析表明,现有 ADGB 仅能使襟翼以最大速率 0.43°/s 偏转,或略作修改后为 1.4°/s 偏转 _____________________________________________