摘要在纳米材料力学实验室和俄罗斯科学学院机械工程学研究所的纳米材料力学和缺陷理论中对研究活动进行了简要综述。它涵盖了旨在解释和理论描述这些材料机械行为的以下特征:与错位的经典Hall-Petch法律,同质和异构的成核的偏差,晶粒边界滑动,其适应性的机制以及其适应性,旋转变形,旋转变形,变形二,变形的晶粒和范围的机制,以及相互作用的范围和相互作用。讨论了一些最重要且最有趣的结果,并将其与实验研究和计算机模拟的可用数据进行了比较。
非线性光学频率转换与非线性介质相互作用以生成新频率,是现代光子系统中的关键现象。然而,这些技术的主要挑战在于难以调整在给定材料中驱动这种影响的非线性电敏感性。作为一种对光学非线性的动态控制,这很大程度上仍然局限于研究实验室,从而将其实际用作用作光谱工具。在这项工作中,我们旨在通过探索两种潜在的机制来推动具有可调非线性响应的设备的开发,以在二维材料中对二阶光学非线性进行电力。具体来说,我们考虑了两种配置:在第一个材料中,材料本质上并未表现出第二谐波生成(SHG),但这种反应是由外部场引起的;第二,外场会诱导已经表现出SHG的材料中的掺杂,从而改变了非线性信号的强度。在这项工作中,我们使用实时的AB-Initio方法研究了这两种配置,但在平面外的外部场上,包括屏蔽的电子电子相互作用中掺杂引起的变化的影响。然后,我们讨论当前计算方法的局限性,并将我们的结果与实验测量进行比较。
抽象的微波遥感在穿过云或致密冰时会显着改变。这种现象不是微波唯一的;例如,在穿过异质组织时,超声也会受到破坏。了解充满粒子的环境中的平均传输是改善数据提取的核心,甚至可以创建可以选择性地阻断或吸收某些波频率的材料。大多数计算平均传输场的方法都假定其满足具有复杂有效波数的波动方程。然而,最近的理论工作已经预测了一个以上的有效波,即使在统计上的各向同性和标量波的材料中也可以传播。在这项工作中,我们通过使用不做任何统计假设的高保真蒙特卡洛模拟,提供了这些预测多个有效波的第一个明确证据。为了实现这一目标,有必要填充颗粒物材料理论中缺失的链接:我们证明,入射波不会在材料中传播,通常将其作为称为Ewald -Oseen灭绝定理的假设。通过证明这一点,我们得出结论,灭绝长度(灭绝的距离所需的距离)等于粒子之间的相关长度。
近十年来,卤化物钙钛矿得到了广泛的研究,部分原因是钙钛矿基太阳能电池的能量转换效率得到了前所未有的快速提高。除了太阳能电池之外,基于钙钛矿的光电器件如光电探测器和发光器件也已展示出令人印象深刻的性能,这得益于大的吸收系数、可调的带隙、缺陷容忍度和长的载流子扩散长度。尽管这些领域已经取得了重大进展,但是包括长期稳定性和铅的毒性在内的一些挑战极大地限制了它们的商业化。人们已经付出了巨大的努力,从光物理的基本理解、材料工程和性能优化等方面来解决这些长期存在的问题。本期特刊以“卤化物钙钛矿:从材料到光电器件”为主题,包括一条评论、四篇综述和五篇原创研究文章,涵盖了所有提到的主题。在本期特刊中,熊等人。来自新加坡南洋理工大学的李建军等 [1] 深入评述了基于钙钛矿的激子极化玻色-爱因斯坦凝聚态的研究现状和未来的研究方向。Koleilat 等 [2] 详细总结了维度工程包括形态工程和分子工程如何影响它们的带隙、结合能和载流子迁移率,从而影响光电探测器和太阳能电池的性能。李等 [3] 综述了二维钙钛矿中自陷激子的研究进程,包括自陷激子的起源,如何检测和控制自陷激子以及自陷激子的存在如何影响钙钛矿基光电器件的性能。唐等 [4] 详细评述了自陷激子在钙钛矿中的研究进展,包括自陷激子的起源,如何检测和控制自陷激子以及自陷激子的存在如何影响钙钛矿基光电器件的性能。 [4] 收集了钙钛矿基发光二极管的外量子效率、亮度和稳定性状态等性能矩阵,向读者简要而全面地介绍了该领域。陈等 [5] 总结了下一代硅基串联太阳能电池的可能顶部电池,并进一步提出了有希望的候选顶部电池。梅等 [6] 通过一种简单的一步滴涂法探索了前体浓度如何影响可印刷无空穴导体介观钙钛矿太阳能电池的性能;游等 [7] 通过使用无掺杂聚合物聚(3-己基噻吩-2,5-二基)(P3HT)作为空穴传输层,研究了无机钙钛矿太阳能电池的性能和热稳定性。钟等[8] 采用刮刀涂布法制备宽带隙甲脒溴化铅薄膜,并研究表面活性剂种类对基于所制备薄膜的太阳能电池性能的影响。魏等。[9] 展示了如何通过复合工程制造高效的钙钛矿基发光二极管。Mu 等人 [10] 提出了一种电晕调制装置结构,以在电子束激发下实现钙钛矿量子点中的随机激光发射。本期特刊中出现的十篇文章仅涵盖了这个快速发展的钙钛矿社区最新进展的一小部分。我们希望本期特刊能为卤化物钙钛矿社区提供有用的参考,并激发这些研究领域的更多研究。
纳米技术已经达到一定的成熟度和市场渗透水平,需要在立法方面进行纳米方面的专门变革,并在立法领域之间进行协调,例如 2020 年 1 月生效的纳米材料 (NM) 的 REACH 修正案。因此,作为全球努力优化纳米安全并将其融入产品设计流程的一部分,通过 Safe(r)-by-Design (SbD) 概念,现在是评估 NM 风险管理的组成部分和监管边界以及相关方法和工具的适当时机。本文概述了 NM 风险管理的最新进展,并为制定和实施有效、可信、透明和实用的 NM 风险管理框架奠定了理论基础。拟议的框架能够不断整合不断发展的科学状态,利用相邻学科的最佳实践,并促进对纳米安全治理的重新思考,以满足未来的需求。为了实现并实施这一框架,目前正在为 NM 建立一个专门的、基于科学的风险治理委员会 (RGC)。该框架将为独立 NM 的风险管理提供工具包,并整合所有利益相关者的需求和观点。考虑到未来欧洲和全球风险研究的基础,还设想将该框架扩展到其他相关的先进材料和新兴技术。
摘要 多种增材制造方法已经成熟,并已在多个行业投入常规生产。对于金属加工,通常使用线材或粉末作为原料。线材加工通常用于相对较大的结构构建,而粉末加工通常提供更精确的金属应用。对于粉末床熔合工艺,使用非常细的粉末(通常为 20 µm 至 65 µm),而对于定向能量沉积,粉末的范围在 50 µm 至 160 µm 之间。这种细粉末可能对人类健康构成风险(吸入、皮肤整合)。避免在生产环境中接触粉末可能是一项艰巨的任务,甚至无法避免。因此,开发了一种替代工艺,该工艺不是以自由粉末颗粒的形式提供粉末,而是以粉末片的形式提供粉末。为了实现颗粒之间必要的粘合,使用粘合剂。为了了解粘合剂在激光加工粉末片过程中的影响,产生了单脉冲和线处理并用高速成像记录下来。记录显示了粘合剂的蒸发和相关的粉末颗粒的喷出。在较低的能量输入下,粘合剂蒸发导致较少的飞溅,这表明在低加热速率下加热粘合剂会对粉末颗粒产生较小的压力。
蛛网膜,尤其是蜘蛛,在大多数生态系统中都充满了丰富(Blamires等,2007; Oxbrough and Ziesche,2013; Henneken et al。,2022; Agnarsson,2023; 2023; Fonseca-Fonseca-Fornesca-forreira等,2023)。蛛网膜(例如蜘蛛,蝎子和螨虫)创建和/或分泌一系列生物材料,包括丝绸,胶水,胶粘剂,粘合剂,纳米纤维,毒液和其他毒素,以及用于形成感觉系统,盔甲,身体色彩/发光和位置的感官系统,kuntememotion(Kuntner,2022),用于形成感觉系统研究了这些类型的蛛网分泌产品的进化和生态方面的研究已经确定,扩展的表型特征使蛛网动物具有巨大的利基灵活性(Agnarsson等,2010; Blamires et al。 Al。,2018年,Viera等人,2019年; Henneken等,2022年; 尽管如此,促进这种功能的遗传特征和表达模式在很大程度上仍未得到探索。 蜘蛛很容易通过将线程放到收集平台上,或者通过麻醉和启动机制来建立网站和/或生产丝绸(Blamires等,2012a; Blamires等,2012b; Blamires et al。 2018; Lacava等人,2018年; 遗传和其他实验的最新进展(参见Sane和McHenry,2009; Craig et al。,2019; Craig et al。,2022; Blamires等,2023a)和计算(例如>研究了这些类型的蛛网分泌产品的进化和生态方面的研究已经确定,扩展的表型特征使蛛网动物具有巨大的利基灵活性(Agnarsson等,2010; Blamires et al。 Al。,2018年,Viera等人,2019年; Henneken等,2022年;尽管如此,促进这种功能的遗传特征和表达模式在很大程度上仍未得到探索。蜘蛛很容易通过将线程放到收集平台上,或者通过麻醉和启动机制来建立网站和/或生产丝绸(Blamires等,2012a; Blamires等,2012b; Blamires et al。 2018; Lacava等人,2018年;遗传和其他实验的最新进展(参见Sane和McHenry,2009; Craig et al。,2019; Craig et al。,2022; Blamires等,2023a)和计算(例如BLAMIRES和卖家,2019年; Craig等,2020; von Reumont等人,因此利用这一点的研究已经建立了有关蜘蛛网络和丝绸结构和功能变异性的强大背景知识(Vollrath和Porter,2006a; Kluge等,2008; Porter and Vollrath,; Porter and Vollrath,2009; Blamires,2010; Blamires et al。,2016b; Blamires; Blamires,2022222222222222222222222222.BlamIr。The genetic expression patterns for certain components of speci fi c silks have now been sequenced for selected species of spiders ( Babb et al., 2017 ; Garb et al., 2019 ; Kono et al., 2019 ), and a database of genetic and molecular structures and bulk fi bre functions for the major ampullate (dragline) silks of over 1000+ spider species has been compiled ( Arakawa et Al。,2022)。Nevertheless, such a strong body of knowledge does not exist for the other arachnid biomaterials (but see Lo ́ pez-Cabrera et al., 2020 ; Lozano-Pe ́ rez et al., 2020 , and Macha ł owski et al., 2020 for detailed reviews on cuticular structural materials, scorpion fl uorescent molecules, and mite silks).在蜘蛛丝上的积累工作意味着我们现在了解环境因素可以影响差异蛋白的遗传机制(在蜘蛛中,这些被称为蜘蛛蛋白,蜘蛛网的portmanteau)表达和生物材料产生,以及这些在表型和扩展的表型表达上的复杂复杂性。
摘要:这是对R 3×S 1的物理学物理学的教学介绍,使用SU(2)Yang -Mills,其大规模或无质量的伴随费米子作为主要的例子;我们还添加了基础,以得出结论。较小的限制非常明显,可以在这些理论(主要是非肌对象)理论中对非扰动物理的控制半经典测定。我们首先审查了r 3上的polyakov构造机制。移至R 3×S 1,我们展示了引入伴随费米子如何稳定中心对称性,从而导致Abelianization和Semiclas-Sial-sical可计算性。我们解释了单极 - instantons和扭曲的单极 - instantons是如何出现的。我们描述了各种新型拓扑激发在将Polyakov的结构扩展到本地四维情况下的作用,讨论了结合字符串的性质以及θ角度的性质。我们研究了全局对称性实现,并在可用的情况下研究了没有相变为S 1大小的函数的证据。我们的目的不是涵盖有关该主题的所有工作,而是要准备兴趣的读者进行研究,我们还提供了对详细介绍的主题的简要描述:对路径积分的分析延续,对更一般的理论的研究以及涉及高级较高符号的't Hooft Anomalies的必要性。
pia.schweizer@cea.fr电子探针微分析(EPMA)是一种可靠且广泛使用的技术,可用于对科学和工业应用进行非破坏性,准确的材料表征。尽管对锂具有极大的兴趣(LI),并且迫切需要在微米级进行准确的非破坏性分析,但使用EPMA对LI的LI量化尚未成功进行。最近开发的周期性多层允许围绕特征性的li k发射〜50 eV [1]的能量范围的光谱,但是配备有弯曲的晶体光谱仪和标准商业化多层的微型探针检测和定量没有衍射光栅仍然具有挑战性。LI检测的困难是由不同的因素引起的:LI的荧光产量极低,很少有Li 1S核心孔的衰减产生的特征光子,有利于螺旋电子的发射。由于其低能量,光子甚至在离开样品及其最终涂层之前就被强烈吸收。因此,信号主要来自可能受到污染的薄表面层,并且可能对电子轰击敏感。微探针成分,尤其是通过分离窗口的进一步吸收光子,将降低测得的强度。由于Li K发射(2p - 1s转变)涉及价电子,因此Li发射带的形状高度依赖于价带中的状态密度(DOS),并且高度依赖于锂原子的化学状态。SCI。 2021,11,6385。 2022,51(4),403。SCI。2021,11,6385。2022,51(4),403。某些EV和强峰形变化的化学位移可能会发生,对于光元的EPMA应该是预期的[2,3],使定量分析变得复杂。这项工作显示了不同材料中LI定量EPMA的一些有希望的结果,包括电池化合物和LI浓度降至2%的金属合金。在整合新检测系统以及使用适用于低压EPMA的实际标准和校正程序进行定量程序之后,这是可能的。即使需要进行额外的调查,研究人员的锂表征也引起了极大的兴趣。我们表明,即使EPMA包含在重矩阵中,EPMA是对LI进行定量分析的强大工具,其元素显示出与LI相同的光谱范围内的特征发射带。这种新颖的LI量化方法比使用SEM或配备了多层光栅的ENER或电子微探针检测到其他技术更容易访问,并且比检测更便宜。[1] Polkonikov,V.,Chkhalo,N.,Pleshkov,R.,Giglia,A.,Rividi,N.,Brackx,E.,Le Guen,K.[2] Schweizer,P.,Brackx,E.,Jonnard,P。,X射线光谱。[3] Hassebi,K.,Le Guen,K.,Rividi,N.,Verlaguet,A.,Jonnard,P.,X-Ray Spectrom。(http://doi.org/10.1002/xrs.3329)在印刷中。