结果:总共包括涉及1,321例患者的24项研究。There was an increased likelihood of wound healing with peripheral blood-derived stem cells, the most effective cells (odds ratios (OR) = 7.31, 95% CI: 2.90 – 18.47), followed by adipose-derived stem cells (OR = 5.23, 95% CI: 2.76 – 9.90), umbilical cord- derived stem cells (OR = 4.94, 95% CI: 0.61 - 40.03),骨衍生的干细胞(OR = 4.36,95%CI:2.43 - 7.85)和其他来源干细胞(OR = 3.16,95%CI:1.83 - 5.45)。然而,只有脐带衍生的干细胞显示出统计学意义(p <0.05)。异质性范围从脂肪和外周血组的不存在(I 2 = 0.00%)到骨骼组中等(I 2 = 26.31%)和其他组(I 2 = 30.62%),以及脐带组中的实质性(I 2 = 88.37%)。不对称的漏斗图指向出版偏差,但是对此进行纠正的修剪和填充方法使效应估计值较低:基于合并或校正或为3.40(95%CI 2.39 - 4.84)。干细胞疗法也与几个次要结果的改善有关,这表明它可能影响DFU的进展。
下班后:Cheri Pritchard 912-677-6039 美国陆军工程兵团:准备布伦瑞克港航行项目补充文件 佐治亚州布伦瑞克——本公告旨在传播有关美国陆军工程兵团萨凡纳区计划的准备步骤和总体前进方向的信息,该计划计划通过环境影响声明补充其国家环境政策法案和布伦瑞克港航行项目运营和维护的其他环境合规文件。预计补充文件将主要侧重于使用漏斗挖泥船进行维护性疏浚的环境影响。为帮助工程兵团初步评估适当的工作和文件,它将开始与资源机构协调。在工程兵团考虑了其初步沟通中的信息并确定了计划的补充文件后,将开展 NEPA 范围界定工作。工程兵团将就其计划的环境合规补充文件征求公众意见。本公告不具有先例性,也不会成为工程兵团程序的一部分。问题或意见可以通过电子方式提交至cesas-planning@usace.army.mil。
摘要:二维过渡金属二甲藻元化半导体(2D TMD)的光电和转运性能非常容易受到外部扰动的影响,从而可以通过后体系修饰来精确地定制材料功能。在这里我们表明,纳米级不均匀性称为纳米泡得很不均匀,可用于菌株,而在双层二硫化物中,激发激子转运的介电调节(WSE 2)。我们使用超敏感的空间分辨的光学散射显微镜直接对激子的传输进行成像,这表明介电纳米泡在室温下在漏斗和捕获激子的效率上非常有效,即使明亮的激子的能量受到了忽略的影响。我们的观察结果表明,电介质不均匀性中的激子漏斗是由动量 - 间接(黑暗)激子驱动的,这些激动型(黑暗)激子的能量比明亮的激子对介电扰动更敏感。这些结果揭示了使用深色态能量景观的介电工程进行特殊空间和能量精确的2D半导体中控制激子传输的新途径。主要文本:二维过渡金属二甲藻元化半导体(2D TMD)是范德华的材料,由于其强烈的光 - 含量相互作用,即使在原子上薄的限制下,它们也对纳米级光电构成了巨大的希望。2D TMD的光电特性在很大程度上受其库仑结合的电子孔对(激子)的控制,其结合能相对较大,高达数百个Milli-Electronvolts(MEV),这是由于平面外介电介质筛选而导致的。1–6与自由电荷不同,激子是电荷中性的,因此很难用电子设备中的外部电场来操纵。7–9因此,激子的传输特性在很大程度上取决于随机的扩散运动,没有远程方向性,从而限制了它们作为信息和能量载体的使用。寻找在2D TMD中操纵激子传输的新方法,而不会根本改变其他材料特性,这将产生激子设备,这些设备结合了强烈的光结合,并精确地控制了原子上薄材料中能量和信息流的精确控制。控制2D TMD的特性的一种有吸引力的途径是利用其对菌株,10–21和环境筛查等外在因素的极端敏感性(图1A),5,22-26,实现对光电和运输特性的合成后调节。例如,拉伸应变减少了2D TMD的光学过渡能;因此,16,18,27,28个局部应变区域会产生能量梯度,可以在纳米级低能部位漏洞和捕获激子,该过程被利用以创建长寿命的量子发射器。14,29–33菌株工程很难控制宏观尺度,并且可能引入不良疾病。
20 世纪后期,紫绀型先天性心脏病患者的治疗和预后有了显著改善,使之前致命的疾病患者寿命接近正常人,症状负担较低但高度可变。法洛四联症 (TOF) 是这类先天性心脏畸形中最大的一种,在分离肺循环和体循环同时保持充足肺血流的外科技术发展中成为焦点。继 1945 年 Blalock 和 Taussig 引入姑息性体至肺动脉分流术以及 1955 年 Lillehei 成功完成外科修复后,现在婴儿期即可进行法洛四联症手术,死亡率不到 2%。手术修复包括室间隔缺损闭合和右心室流出道 (RVOT) 阻塞缓解,这通常不仅需要切除漏斗组织和瓣膜切开术,还需要使用跨环补片扩大 RVOT。虽然这种手术方法在儿童早期获得生理稳定性方面非常成功,但跨环补片会导致自由肺动脉反流 (PR) 和慢性右心室 (RV) 容量超负荷。即使
图1:测定实验中电流诱导的力。(a)KERR显微镜图像显示了一个限制在40μm×7μm的带有漏斗类的丝线中的单个Skyrmion(深色斑点)。左侧和右侧的金触点允许沿线施加电流。(b-d)我们的方法的逐步应用为2.14∙106 A/m 2的电流密度。(b)用于施加在左侧(蓝色)和右(红色)的电流的偏置的天空分布。(c)产生的偏置PMF。(d)推断的纯固定能量景观(蓝色)和推断的纯力偏置(红色)。力偏置的中央区域的线性拟合(虚线黑线)的斜率等于天空上的力。(e)电流诱导的力对施加电流密度的强度图。通过将天空轨迹分为三个部分,并使用力偏差斜率的平均值和标准误差来估计数据点的误差。测量已在名义上的两个不同的设备上进行了与数据点颜色所示的同一样品上相同几何形状进行的。这些点进行调整以纠正Skyrmion尺寸的偏差;原始点以灰色给出。交叉表示模拟结果。
此类材料可用于传感器技术[3–6]、能量存储和转换[7–12]、催化[13,14]以及光学和光电设备等各个领域。[15] 此类材料合成的主要挑战之一是化学功能单元的定制整合。石墨烯等二维碳材料在这方面引起了人们的极大兴趣。[16,17] 然而,石墨烯作为组装分级材料的平台的应用受到限制,特别是由于其化学惰性以及在功能化后物理性质的恶化。[15,18,19] 因此,分子纳米片越来越受到关注,因为它们可以由各种有机化合物灵活组装并本质上提供功能基团。 [20,21] 在这方面,碳纳米膜 (CNM)——厚度约为 1 纳米的分子纳米片,为二维材料的分级组装提供了一个通用平台。[22–25] CNM 可以通过电子辐照诱导芳香族自组装单分子层 (SAM) 交联大规模合成,[23] 具有可调的厚度 [24] 和孔隙率 [24,26],并允许化学功能化 [27,28] 以及气体和离子渗透,[29,30] 等。CNM 的应用示例包括二维片的分级组装,用于生物识别 [31] 和能量漏斗 [27] 应用,以及用于实施
摘要:提出了ATLAS协作对Charginos和Nutralos的Electroweak生产进行的搜索的约束摘要。考虑了八个单独的地图集搜索的结果,每种质子 - 质子蛋白数据的140 fb - 1在其第二次数据获取运行期间在大型强子撞机上收集的√s= 13 tev的质子 - 质子数据。结果是在19参数现象学最小的超对称标准模型的背景下解释的,其中假定R-平衡保守性,并假定最轻的超对称粒子是最轻的中性粒子。约束。结果是根据超对称粒子质量的约束表示的,并与简化模型的限制进行了比较。还显示了Atlas搜索对参数的影响,例如暗物质遗物密度以及由直接暗物质检测实验靶向的自旋依赖性和自旋依赖性散射横截面。Higgs Boson和Z Boson的“漏斗区”,低质量的中性诺不会使深色物质遗物丰度过于饱和,几乎完全被所考虑的约束所排除在外。还提出了具有光charginos和中性诺斯的非排斥超对称模型的示例光谱。
摘要。人工神经网络的神经元最初是在人们对生物神经元的了解远不如今天时发明的。我们的工作探索了对核心神经元单元的修改,使其与生物神经元更加平行。修改是基于这样的认识:生物树突不仅仅是被动激活漏斗,而且在将激活传递到细胞体时还会计算复杂的非线性函数。本文探讨了一种新颖的“穿孔”反向传播系统,该系统使深度神经网络的人工神经元能够更好地编码它们在原始架构中编码的相同特征。在初始网络训练阶段之后,将额外的“树突节点”添加到网络中,并分别进行训练,目标是:将它们的输出与原始神经元的剩余误差相关联。然后冻结训练后的树突节点,并进一步训练原始神经元,现在要考虑树突节点提供的额外误差信号。训练原始神经元然后添加和训练树突节点的循环可以重复多次,直到达到令人满意的性能。我们的算法已成功添加到跨多个领域的现代最先进的 PyTorch 网络中,提高了原始精度,并允许在不损失精度的情况下显着压缩模型。关键词:人工神经网络、深度学习、语音处理、药物发现、股票预测、机器学习、树突状积分、级联相关、人工神经发生
摘要最常见的基因调节机制是当转录因子(TF)蛋白与调节序列结合以增加或减少RNA转录时。但是,在搜索这些序列时,TFS面临两个主要挑战。首先,相对于基因组长度,这些序列消失了。第二,散布在整个基因组上的几乎相同的序列,导致蛋白质暂停搜索。,但正如大肠杆菌中LACI调节的计算研究中所指出的那样,如果考虑DNA循环,这种几乎目标可能会较低。在本文中,我们探讨了这是否也发生在整个染色体的距离上。为此,我们开发了一个跨尺度的计算框架,该框架结合了建立的促进式扩散模型,用于基地级搜索和一个捕获全染色体范围的飞跃的网络模型。为了使我们的模型逼真,我们使用HI-C数据集作为超过100 TF的长期DNA片段和结合曲线之间3D接近的代理。使用我们的跨尺度模型,我们发现指向单个目标的中位数搜索时间严重取决于网络组合的结合节点强度(链接权重的总和)和局部分离率。另外,通过随机化这些速率,我们发现某些实际的3D目标配置比随机对应物更快或较慢。这一发现暗示染色体的3D结构漏斗对于相关的DNA区域必不可少。
印度的传统种子植物植物技术通常涉及使用拖拉机驱动的钻孔或动物绘制漏斗管。如今,速度,能源经济,用于精确指导的传感器以及启用GPS和无线连接等技术是自主野外机器人开发的主要重点。早期的方法是劳动密集型,需要大量时间和精力。相反,基于拖拉机的钻孔中此类功率单元的操作员受到高水平的振动和噪声,这对其健康和生产力有害。过去的技术并不那么先进。因此,他们是手种子的。但是,近年来技术已经发展。鉴于印度农业部门的现实,建造的系统必须更具成本效益,更准确地运行,使用更少的燃料,并且与拖拉机和传统方法相比,人类的体力少。农民将真正受益于最终产品。在农业中使用机器人技术是一个相对较新的概念。在农业中具有机器人增强生产率的潜力是巨大的,并且越来越多的机器人以各种形式出现在农场上。由于替换人类运营商的潜力提供了具有投资回报的实用解决方案,乐器机器人的应用每天都在扩展,包括更多域。因此,我们建议一种农业自动化系统,该系统可能会帮助农民付出更少的努力。