我们的愿景是每年从大气中捕获超过2500万吨的二氧化碳,每天产生约150,000桶的efuels,并制造超过500万辆汽车中性。
摘要 — 本研究展示了 Si 衬底上 GaN 高电子迁移率晶体管 (HEMT) 的高频和高功率性能。使用 T 栅极和 n ++ -GaN 源/漏接触,栅极长度为 55 nm、源漏间距为 175 nm 的 InAlN/GaN HEMT 的最大漏极电流 ID,MAX 为 2.8 A/mm,峰值跨导 gm 为 0.66 S/mm。相同的 HEMT 表现出 250 GHz 的正向电流增益截止频率 f T 和 204 GHz 的最大振荡频率 f MAX。ID,MAX、峰值 gm 和 f T -f MAX 乘积是 Si 上 GaN HEMT 中报道的最佳乘积之一,非常接近最先进的无背势垒 SiC 上耗尽型 GaN HEMT。鉴于 Si 的低成本和与 CMOS 电路的高兼容性,Si 上的 GaN HEMT 对于成本敏感的应用特别有吸引力。
利用第一性原理计算,我们研究了六种过渡金属氮化物卤化物 (TMNH):HfNBr、HfNCl、TiNBr、TiNCl、ZrNBr 和 ZrNCl 作为过渡金属二硫属化物 (TMD) 沟道晶体管的潜在范德华 (vdW) 电介质。我们计算了剥离能量和体声子能量,发现这六种 TMNH 是可剥离的并且具有热力学稳定性。我们计算了单层和体 TMNH 在平面内和平面外方向的光学和静态介电常数。在单层中,平面外静态介电常数范围为 5.04 (ZrNCl) 至 6.03 (ZrNBr),而平面内介电常数范围为 13.18 (HfNBr) 至 74.52 (TiNCl)。我们表明,TMNH 的带隙范围从 1.53 eV(TiNBr)到 3.36 eV(HfNCl),而亲和力范围从 4.01 eV(HfNBr)到 5.60 eV(TiNCl)。最后,我们估算了具有六个 TMNH 单层电介质和五个单层通道 TMD(MoS 2 、MoSe 2 、MoTe 2 、WS 2 和 WSe 2 )的晶体管的电介质漏电流密度。对于 p- MOS TMD 通道晶体管,30 种组合中有 25 种的漏电流小于六方氮化硼 (hBN),一种众所周知的 vdW 电介质。对于以 HfNCl 为栅极电介质的 ap -MOS MoSe 2 晶体管,预测最小双层漏电流为 1.15×10 -2 A/cm 2。据预测,HfNBr、ZrNBr 和 ZrNCl 也会在某些 p-MOS TMD 晶体管中产生微小的漏电流。
摘要 — 在现代 MOS 技术中,晶体管几何形状的不断缩小导致名义上相同的器件之间的差异性增加。为了研究此类器件的差异性和可靠性,需要测试具有统计意义的大量样本。在这项工作中,我们对导致 BTI 和 RTN 的缺陷进行了特性研究,该研究是在由数千个纳米级器件组成的定制阵列上进行的。在这种纳米级器件中,差异性和可靠性问题通常针对单个缺陷进行分析。然而,提取具有统计意义的结果需要大量的测量,这使得这种方法不可行。为了分析大量的测量数据,我们采用了由捕获和发射电荷的缺陷引起的阈值电压偏移的统计分布。这使我们能够使用以缺陷为中心的方法提取缺陷统计数据。针对各种栅极、漏极和体偏置以及两种几何形状对缺陷分布进行了表征,以验证方法并获得适合 TCAD 建模和寿命估计的统计数据。使用 TCAD 模型,我们可以推断出观察到的器件退化。最后,我们研究了体和漏极应力偏差对缺陷的影响,并观察到体偏压对器件性能下降的影响与栅极偏压相似。相比之下,对于所研究的技术,漏极偏压高达 − 0.45 V 时漏极应力似乎可以忽略不计。我们的测量结果还清楚地表明,整体 BTI 性能下降严重依赖于栅极体应力偏差,而提取的 RTN 缺陷数量似乎与应力无关。
推荐组装说明 1. 旁路电容应为 100 pF(大约)陶瓷(单层),放置位置距放大器不超过 30 mil。 2. 在输入和输出上使用 <10 mil(长)x 3 x 0.5 mil 的带状线可获得最佳性能。 3. 必须按照指示从两侧偏置部件。 4. 如果漏极电源线干净,则不需要 0.1uF、50V 电容器。 如果要使用设备的漏极脉冲,请勿使用 0.1uF、50V 电容器。 安装过程