9. 首先,制作 10 批潘趣酒,因为这将导致潘趣酒杯数为整数。要制作 10 批潘趣酒,Jason 需要 10 倍的橙汁杯数和 10 倍的芒果汁杯数。因此,他需要 5 杯橙汁和 2 杯芒果汁。现在,要制作 21 杯潘趣酒,Jason 将需要 3 倍的橙汁和芒果汁杯数。
当具有整数自旋的粒子在低温和高密度下聚集时,它们会发生玻色-爱因斯坦凝聚 (BEC)。原子、磁振子、固态激子、表面等离子体极化子和与光耦合的激子表现出 BEC,由于大量占据相应系统的基态,因此产生高相干性。令人惊讶的是,最近发现光子在有机染料填充的光学微腔中表现出 BEC,由于光子质量低,这种情况发生在室温下。在这里,我们证明无机半导体微腔内的光子也会热化并经历 BEC。虽然人们认为半导体激光器是在热平衡之外运行的,但我们在系统中确定了一个热化良好的区域,我们可以清楚地区分激光作用和 BEC。半导体微腔是探索量子统计光子凝聚体的物理和应用的强大系统。实际上,光子 BEC 在比激光器更低的阈值下提供其临界行为。我们的研究还显示了另外两个优点:无机半导体中没有暗电子态,因此这些 BEC 可以持续存在;量子阱提供更强的光子-光子散射。我们测量了一个未优化的相互作用参数 (̃ g ≳ 10 –3),该参数足够大,可以了解 BEC 内相互作用的丰富物理特性,例如超流体光。
在基于量子阱的异质结构材料中,研究能态密度对量化磁场强度和占据的依赖关系,可以为纳米级半导体结构中电荷载流子的能谱提供有价值的信息。当低维半导体材料暴露于横向量化磁场时,能态密度可以通过动力学、动力学和热力学量的振荡依赖关系来测量——磁阻、磁化率、电子热容量、热电功率、费米能和其他物理参数 [3, 4]。由此可见,在横向和纵向磁场存在下研究矩形量子阱导带能态密度的振荡是现代固体物理学的迫切问题之一。
硅锗异质结构中的栅极定义量子点已成为量子计算和模拟的有力平台。迄今为止,发展仅限于在单个平面中定义的量子点。在这里,我们提出通过利用具有多个量子阱的异质结构来超越平面系统。我们展示了应变锗双量子阱中栅极定义双量子点的操作,其中两个量子点都与两个储层进行隧道耦合,并发生平行传输。我们分析了与附近栅极的电容耦合,发现两个量子点都聚集在中央柱塞栅极下方。我们提取了它们的位置和大小,由此得出结论,双量子点垂直堆叠在两个量子阱中。我们讨论了多层器件的挑战和机遇,并概述了量子计算和量子模拟中的一些潜在应用。
(ix) 最后就读学校的品格证明原件(另加 1 份复印件) (x) TC/移民证明原件(另加 1 份复印件) (xi) 由 CMO/CMS 副署的医疗证明,原件随附。(另加 1 份复印件) (xii) 教育差距宣誓书原件(另加 1 份复印件) (xiii) 反欺凌承诺书打印件 http://www.antiragging.in。(另加 1 份复印件) (xiv) 居住证明(如适用)(另加 2 份复印件) (xv) 类别证明(如适用)(另加 2 份复印件) (xvi) 子类别证明(如适用)(另加 2 份复印件) (xvii) 随附个人资料格式。(另加 2 份复印件) (xviii) 庄严自愿声明表(随附格式)(另加 1 份复印件) (xix) Adhaar 卡(另加 2 份复印件) (xx) ABC 身份证
我们描述了用于存储和冷却原子氢 (H) 的大型磁阱的设计和性能。该阱在 1.5 K 温度下的稀释制冷机的真空空间中运行。为了获得较大的阱体积,我们实施了八极子配置的线性电流 (Ioffe 条) 用于径向约束,并结合两个轴向箍缩线圈和一个 3 T 螺线管用于低温 H 解离器。八极子磁体由八个轨道段组成,它们通过磁力相互压缩。这提供了一个机械稳定且坚固的结构,每个段都可以更换或修理。最大阱深度达到了 0.54 K (0.8 T),相当于 50 mK 下氢气的有效体积为 0.5 升。这比以往用于捕获原子的体积要大一个数量级。
光子平台是量子技术的绝佳环境,因为弱的光子与环境耦合可以确保较长的相干时间。量子光子学的第二个关键因素是光子之间的相互作用,这可以通过交叉相位调制 (XPM) 形式的光学非线性提供。这种方法支撑了量子光学 1 – 7 和信息处理 8 中的许多拟议应用,但要发挥其潜力,需要强的单光子级非线性相移以及可扩展的非线性元件。在这项工作中,我们表明所需的非线性可以由嵌入量子阱的微柱中的激子极化子提供。它们将激子的强相互作用 9、10 与微米级发射器的可扩展性结合起来。11。使用衰减到单光子平均强度以下的激光束,我们观察到每个极化子的 XPM 高达 3±1 mrad。以我们的工作为第一步,我们为极化子晶格中的量子信息处理铺平了道路。XPM 的量子应用包括远距传物 1 、光子数检测 2 、计量学 4 、密码学 5 和量子信息处理 (QIP),其中它被提议作为电路 6 和测量 7 的途径
摘要 量子计算机面临的一个主要挑战是可扩展的量子门同时执行。在囚禁离子量子计算机中解决这一问题的一种方法是基于静态磁场梯度和全局微波场实现量子门。在本文中,我们介绍了表面离子阱的制造方法,其中集成的铜载流导线嵌入在离子阱电极下方的基板内,能够产生高磁场梯度。在室温下测得的铜层薄层电阻为 1.12 m Ω /sq,足够低,可以实现复杂的设计,而不会在大电流下产生过多的功率耗散导致热失控。在 40 K 的温度下,薄层电阻降至 20.9 μ Ω /sq,残余电阻比的下限为 100。可以施加 13 A 的连续电流,导致在离子位置处模拟磁场梯度为 144 T m − 1,对于我们设计中的特定反平行线对,该位置距离陷阱表面 125 μ m。
基于线性射频阱中捕获离子的量子比特由于其高保真度的操作、全对全连接和局部控制程度而成为量子计算的成功平台。原则上,可以限制在单个 1D 寄存器中的基于离子的量子比特数量没有根本限制。然而,在实践中,长捕获离子晶体存在两个主要问题,这些问题源于其运动模式在扩大时会“软化”:离子运动的高加热率和密集的运动谱;两者都会阻碍高保真量子比特操作的性能。在这里,我们提出了一种使用大离子晶体的量子计算的整体、可扩展架构来克服这些问题。我们的方法依赖于动态操作的光势,它可以瞬间将离子晶体分割成可管理大小的单元。我们表明这些单元表现为几乎独立的量子寄存器,允许所有单元上都有并行纠缠门。重新配置光学势能的能力保证了整个离子晶体的连通性,并且还实现了高效的中电路测量。我们研究了大规模并行多量子比特纠缠门的实现,这些门可同时在所有单元上运行,并提出了一种协议来补偿串扰误差,从而实现大规模寄存器的全面使用。我们说明了这种架构对于容错数字量子计算和模拟量子模拟都是有利的。