摘要 激光直接金属沉积 (DMD) 已发展成为一种在现有材料上沉积涂层的制造工艺,并在复杂精密部件的增材制造 (AM) 中被证明具有优势。然而,必须仔细确定适当的工艺参数组合,以使这种方法在工业上经济可行。本研究旨在提高不锈钢 EN X3CrNiMo13-4 的激光 DMD 的生产率。据此,讨论了激光功率 P、扫描速度 v、粉末流速 ̇ m 和光斑直径 s 等主要激光工艺参数对轨道几何形状和堆积率的影响。进行回归分析以推导主要参数组合与沉积速率之间的相关性。结果显示,对于长宽比、稀释度和沉积速率的几何特性,线性回归相关性良好,R 2 >0.9。使用线性回归方程构建的加工图展示了与沉积速率、长宽比和稀释度相关的适当工艺参数选择。
图 1 多焦点打印的不同光束分裂方法概览。a 宽带激光束照射衍射光学元件 (DOE) 并衍射成两个衍射级的渲染图。与波长相关的衍射角使入射光束散开。b 渲染图显示多透镜阵列 (MLA),该阵列将入射红色高斯激光束的一小部分聚焦到焦点阵列中。一半的入射激光功率被传输而不会影响焦点阵列。c 入射红色激光束照射 DOE 并在单个光束中衍射的渲染图。使用宏观透镜,每个光束被引导到由单独的微型透镜组成的 MLA 的单个透镜上。这些透镜进一步聚焦每个光束,有效地增加和创建可用于多光子多焦点 3D 打印的焦点阵列(焦点扩展函数仅有微小扩展)。
1生产工程毕业后计划,巴西圣保罗卫理公会大学。2工程学校,麦肯齐长老会大学,圣保罗,巴西。3古巴圣地亚哥de Cuba的Oriente University机械与工业工程学院。 4巴拉那帕拉纳帕拉纳联邦技术大学的客座教授。 5 Insper-巴西圣保罗教育与研究所。 *通讯作者:dtasev88@gmail.com摘要激光金属沉积(LMD)工艺是一种增材制造技术,由于其能力具有复杂的几何形状和不同类型的金属材料,因此吸引了汽车和航空工业的兴趣。 但是,沉积层的结构和制成部分的几何特性受沉积过程参数之间的相互作用的影响。 在本文中,使用模糊推理(FIS)技术来开发两个模型,以预测几何特性,并使用AISI 316不锈钢粉末和底物优化LMD工艺参数。 基于阶乘分析的实验设计用于将所选沉积过程参数,激光功率(LP),粉末流量(PF)和焦距(FL)与过程的几何特征珠高(BH),珠宽度(BW),渗透深度(DP),渗透(DP)和湿度(DP)和湿度(WA)相关联。 因子LP和FL使用三个操作水平:LP = 225 W,250 W,275 W,FL = 4.8 mm,5.0 mm,5.2 mm。 使用两个级别的因子PF,9.40 g/s和13.35 g/s。3古巴圣地亚哥de Cuba的Oriente University机械与工业工程学院。4巴拉那帕拉纳帕拉纳联邦技术大学的客座教授。5 Insper-巴西圣保罗教育与研究所。 *通讯作者:dtasev88@gmail.com摘要激光金属沉积(LMD)工艺是一种增材制造技术,由于其能力具有复杂的几何形状和不同类型的金属材料,因此吸引了汽车和航空工业的兴趣。 但是,沉积层的结构和制成部分的几何特性受沉积过程参数之间的相互作用的影响。 在本文中,使用模糊推理(FIS)技术来开发两个模型,以预测几何特性,并使用AISI 316不锈钢粉末和底物优化LMD工艺参数。 基于阶乘分析的实验设计用于将所选沉积过程参数,激光功率(LP),粉末流量(PF)和焦距(FL)与过程的几何特征珠高(BH),珠宽度(BW),渗透深度(DP),渗透(DP)和湿度(DP)和湿度(WA)相关联。 因子LP和FL使用三个操作水平:LP = 225 W,250 W,275 W,FL = 4.8 mm,5.0 mm,5.2 mm。 使用两个级别的因子PF,9.40 g/s和13.35 g/s。5 Insper-巴西圣保罗教育与研究所。*通讯作者:dtasev88@gmail.com摘要激光金属沉积(LMD)工艺是一种增材制造技术,由于其能力具有复杂的几何形状和不同类型的金属材料,因此吸引了汽车和航空工业的兴趣。但是,沉积层的结构和制成部分的几何特性受沉积过程参数之间的相互作用的影响。在本文中,使用模糊推理(FIS)技术来开发两个模型,以预测几何特性,并使用AISI 316不锈钢粉末和底物优化LMD工艺参数。基于阶乘分析的实验设计用于将所选沉积过程参数,激光功率(LP),粉末流量(PF)和焦距(FL)与过程的几何特征珠高(BH),珠宽度(BW),渗透深度(DP),渗透(DP)和湿度(DP)和湿度(WA)相关联。因子LP和FL使用三个操作水平:LP = 225 W,250 W,275 W,FL = 4.8 mm,5.0 mm,5.2 mm。使用两个级别的因子PF,9.40 g/s和13.35 g/s。差异分析允许识别PF影响BH,BH/BW比率,D和WA。激光功率(LP)的增加导致几何特征BW和DP的增加。第一个FI,用于预测珠的几何特性,具有高足够的(相对误差高达8.43%),用于评估EX的体验条件。考虑到所研究的工作条件和评估的变量,第二FI表示最佳相互作用。使用沉积过程参数LP = 250 W,FL = 5 mm,PF = 9.40 g/s,获得了最大输出解体指数(ODI = 0.845)。关键字:激光金属沉积,模糊推理,珠几何预测,沉积过程参数,AISI 316不锈钢1.简介
摘要 激光直接金属沉积 (DMD) 已发展成为一种在现有材料上沉积涂层的制造工艺,并在复杂精密部件的增材制造 (AM) 中被证明具有优势。然而,必须仔细确定适当的工艺参数组合,以使这种方法在工业上经济可行。本研究旨在提高不锈钢 EN X3CrNiMo13-4 的激光 DMD 的生产率。据此,讨论了激光功率 P、扫描速度 v、粉末流速 ̇ m 和光斑直径 s 等主要激光工艺参数对轨道几何形状和堆积率的影响。进行回归分析以推导主要参数组合与沉积速率之间的相关性。结果显示,对于长宽比、稀释度和沉积速率的几何特性,线性回归相关性良好,R 2 >0.9。使用线性回归方程构建的加工图展示了与沉积速率、长宽比和稀释度相关的适当工艺参数选择。
摘要:定向能量沉积 (DED) 是增材制造 (AM) 的一个重要分支,可用于修复、熔覆和加工多材料部件。316L 奥氏体不锈钢广泛用于食品、航空航天、汽车、船舶、能源、生物医学和核反应堆行业等领域。尽管如此,仍需要优化工艺参数,并全面了解工艺参数对沉积材料或部件的几何形状、微观结构和性能的单独和复杂协同作用。这对于确保在单个或一系列平台上随时间重复制造零件,或最大限度地减少孔隙率等缺陷至关重要。在本研究中,采用响应曲面法 (RSM) 和中心复合设计 (CCD) 研究激光功率、激光扫描速度和粉末质量流量对激光工程净成形 (LENS ®) DED 加工的 316L 钢的层厚度、密度、微观结构和显微硬度的影响。开发了与应用的加工参数和研究的响应相关的多项式经验预测模型。
摘要:本研究提出,激光脉冲可以产生有限振幅瑞利波,用于增材制造过程中的工艺监控。非接触式工艺监控使用脉冲激光产生瑞利波,并使用自适应激光干涉仪接收它们。文献中的实验和模型表明,有限振幅波形会随着传播距离而演变,甚至会在平面粒子速度波形中形成冲击波。非线性波形演变表明材料非线性,它对材料微观结构敏感,进而影响强度和断裂性能。测量是在定向能量沉积增材制造室内对平面 Ti-6Al-4V 和 IN-718 沉积物进行的。通过检测平面外粒子位移波形,还可以获得平面位移和速度波形。波形演变可以表征为 (i) 通过在不同点接收一个源振幅,或 (ii) 通过应用不同的源振幅在一个点接收。提供了针对有意调整的关键工艺参数的样本结果:激光功率、扫描速度和舱口间距。
摘要:为了了解选择性激光熔化 (SLM) 工艺背后的物理行为,人们广泛采用了数值方法进行模拟。宏观尺度的数值模拟可以研究输入参数(激光功率、扫描速度、粉末层厚度等)与输出结果(变形、残余应力等)之间的关系。然而,有限元法求解的宏观热模型无法正确预测熔池深度,因为它们忽略了熔池中流体流动的影响,尤其是在存在深穿透的情况下。为了弥补这一限制,提出了一种易于实现的温度相关热源。该热源可以在模拟过程中调整其参数,以补偿与流体流动和小孔相关的这些被忽略的热效应,一旦关注点的温度稳定,热源的参数就会固定下来。与传统的热源模型相反,所提出的热源的参数不需要针对每个工艺参数进行实验校准。通过将所提模型的结果与各向异性热导率方法和实验测量的结果进行比较,验证了所提模型的有效性。
演讲者:Aditya Kolhatkar 顾问:Karan Mehta 标题:集成光学元件的微加工离子阱中的相干控制 摘要:捕获离子是量子信息处理的主要平台,但扩大捕获装置和光学元件的规模是一项重大挑战,改进典型的操作时间尺度也同样重要。在本次演讲中,我将讨论最近在集成光学传输的微加工离子阱中对单个 40 Ca + 离子进行阱特性表征和相干控制的实验。纠缠双量子比特门对通用量子计算至关重要,通常会限制电路保真度,从而促使人们寻找快速、高保真度的实现。我将描述在我们的设置中实现“光移”双量子比特门的实验方案,并重点介绍如何使用集成光传输实现的结构化光场,在这些设备中实现激光功率、门保真度和门速度之间的更好权衡。
摘要。所研究的光伏电池半导体结构由 SnO 2 镀膜玻璃和 CdMnSe 薄膜组成。通过检查激光功率和样品温度下 CdMnSe 薄膜表面的光致发光,研究了原生薄膜、空气退火薄膜和经过 CdCl 2 处理的薄膜。在玻璃基板上生长 Cd 1-x Mn x Se(x =0.02)薄膜。根据光电流的动力学衰减确定了脉冲照射下的载流子寿命。在激光辐射影响下对非平衡光电导弛豫曲线的研究证实了两个复合通道的存在——本征和杂质。光电流弛豫通过快速和慢速复合通道发生。与本征跃迁相关的快速弛豫时间 τ = 6 μs,而慢速弛豫时间则归因于杂质激发,τ = 22 μs。研究了Cd1-xMnxSe(x=0.02)薄膜的光致发光光谱,在光致发光研究中观察到两个最大值,它们是由供体-受体复合和Mn原子的中心内跃迁引起的。
摘要:Inconel 718 是一种镍基高温合金,由于其高强度和耐腐蚀性能,是航空航天、石油和天然气工业的绝佳选择。IN718 的加工非常具有挑战性;因此,应用增材制造 (AM) 技术是克服这些困难和制造传统技术无法制造的复杂几何形状的有效方法。选择性激光熔化 (SLM) 是一种激光粉末床熔合方法,可用于高精度制造 IN718 样品。然而,工艺参数对制造样品的性能有很大影响。在本研究中,开发了一个预测模型,以获得 IN718 合金 SLM 工艺中的最佳工艺参数,包括激光功率、图案间距和扫描速度。为此,采用具有各种算法的人工神经网络 (ANN) 建模来估计工艺输出,即样品高度和表面硬度。建模结果与实验输出完全吻合,从而证明了 ANN 建模对于预测最佳工艺参数的优势。