激光捕获显微切割 (LCM) 是一种用于从组织切片中选择和获取细胞簇的新方法。一旦捕获,DNA、RNA 或蛋白质就可以轻松地从分离的细胞中提取出来,并通过常规 PCR、逆转录 (RT)-PCR 或聚丙烯酰胺凝胶电泳进行分析,包括蛋白质酶谱分析特定的大分子变化。在 LCM 中,附着在刚性支撑物上的热塑性聚合物涂层 [乙烯醋酸乙烯酯 (EVA)] 与组织切片接触。近红外激光脉冲精确激活微观选择的细胞簇上的 EVA 聚合物,然后将其结合到目标区域。从组织切片上移除 EVA 及其支撑物可获取选定的细胞聚集体以进行分子分析。这种使用平面转移 EVA 薄膜的初始 NIH LCM 方法最近已商业化,并已被证明是一种有效的常规显微切割技术,可用于许多实验室的后续大分子分析 -
囚禁离子具有较长的相干时间、固有的均匀性和较高的门保真度,是量子模拟和通用量子计算的一个有前途的平台[1-8]。实现高保真度多量子比特纠缠门的最常用方法依赖于将内部量子比特“自旋”态与集体运动自由度耦合[1,2,9]。几何相位门——通过运动相空间中封闭的、自旋相关的轨迹产生纠缠——被广泛使用,因为它们对离子温度(在 Lamb-Dicke 极限下)具有一级不敏感性[10-12]。几何相位门利用激光束产生所需的自旋运动耦合,已被用于产生保真度为 ∼ 0 的贝尔态。 999 [7,8],主要误差来自非共振光子散射[13]。其他无激光方案利用静态[14-19]、近量子比特频率[20-25]或近运动频率[20,26-28]磁场梯度引起自旋运动耦合。虽然无激光方案消除了光子散射误差,并且不需要稳定的高功率激光器,但由于其门持续时间通常较长,因此更容易受到其他噪声源的影响。由于场幅度波动导致的量子比特频率偏移或错误校准是使用微波场梯度实现的无激光门的主要误差源[19,21]。最近的研究表明,通过精心的陷阱设计可以被动地减少其中一些偏移[24]。也可以通过添加控制场来执行动态解耦,从而主动减少它们[18,29-32];迄今为止,最好的
2 全栈量子计算集成了所有硬件、软件、固件和云门户组件,这些组件都是通过应用量子物理原理开发的。基本信息单元是量子比特(或量子位),与传统比特不同,它们可以保存 0 到 1 之间的多个值。量子计算机利用物质的微观特性执行复杂的操作,成倍地提高了当今传统计算机可实现的计算能力。量子计算机的架构将基于用激光捕获的单个超冷镱原子的内存寄存器。镱 (Yb) 是稀土族的化学元素。它通常与钇和其他镧系元素有关,存在于独居石、钇矿和磷钇矿中。
博士学位:在我的博士学位期间,我有机会获得了高级显微镜的专业知识,包括激光捕获显微解剖(LCM),多极子共聚焦显微镜,活细胞成像和扫描电子显微镜(SEM)。除了我在基本微生物学和分子生物学技术方面的熟练程度外,我还获得了基因表达相关方法的实践知识。其中包括基因表达微阵列分析,miRNA微阵列分析,北印迹,电泳迁移率转移测定法(EMSA),原位杂交,定量逆转录聚合酶链反应(QRT-PCR),STEM-LOOP QRT QRT-PCR以及其数据的解释。此外,我在组织固定方面开发了专业知识,使用石蜡蜡和微落部分的加工来进行薄切片。
摘要 ◥ 目的:在适当的体外和体内模型系统中,已经开发出基于精确机制的基因表达特征 (GES),以识别重要的癌症相关信号传导过程。然而,一些最初开发用于代表特定疾病过程的 GES,主要针对上皮细胞,正在应用于异质性肿瘤样本,其中特征中基因的表达可能不再是上皮特异性的。因此,在不知不觉中,肿瘤基质百分比的微小变化也会直接影响 GES,从而破坏预期的机制信号传导。实验设计:以结直肠癌为例,我们部署了多种正交分析方法,包括激光捕获显微切割、流式细胞术、大量和多区域活检临床样本、单细胞 RNA 测序以及最终的空间转录组学,以全面评估最广泛使用的 GES 的潜力,以
应用:•浓缩器(体积小至 5µl):寡核苷酸(>17bp)、DNA、基因组 DNA(<140bk)、RNA 和微小 RNA • ChIP DNA 清理和浓缩(快速高效,仅需 10 分钟即可实现高回收率)。•从 LCM(激光捕获显微切割)样本中分离 RNA。•从唾液、血浆、血清、全血、组织样本(如鼠尾)、病毒、细菌、植物或其他来源制备纳克到毫克量的 DNA 或 RNA。•大肠杆菌转化后,直接从平板上的单个菌落(直径 >2mm)进行 DNA/RNA 纳米制备,无需培养 2ml 过夜培养物。•DNA/RNA 凝胶提取•从 PCR 产物、酶反应、标记、测序反应中清理 DNA 和 RNA•微小 RNA(小 RNA)制备和清理规格:
补充参考文献 1. Lincoln, CN, Fitzpatrick, AE 和 van Thor, JJ 光活性黄色蛋白飞秒激发下的光异构化量子产率和非线性截面。Phys. Chem. Chem. Phys. 14 , 15752-15764 (2012)。 2. Kim, JE, Tauber, MJ 和 Mathies, RA 视觉中波长依赖性的顺反异构化。Biochemistry 40 , 13774-13778 (2001)。 3. Shoeman, RL, Hartmann, E. 和 Schlichting, I. 生长和制造纳米和微晶体 Nat Protoc 正在印刷中 (2022)。 4. Groot, ML, vanGrondelle, R., Leegwater, JA 和 vanMourik, F. 绿色植物和细菌红细菌光系统 II 反应中心的自由基对量子产率。亚皮秒脉冲下的饱和行为。J. Phys. Chem. B 101 , 7869-7873 (1997)。5. Claesson, E. 等人。飞秒 X 射线激光捕获的光敏色素蛋白的一级结构光响应。eLife 9 , e53514 (2020)。6. Sugahara, M. 等人。油脂基质作为用于序列晶体学的多功能蛋白质载体。自然方法 12 , 61-3 (2015)。7. Li, H. 等人。使用时间分辨的串行飞秒晶体学捕捉光系统 II 从 S1 到 S2 转变的结构变化。IUCrJ 8,431-443 (2021)。8. Grünbein, ML 等人。通过串行飞秒晶体学进行超快泵浦探测实验的照明指南。自然方法 17,681-684 (2020)。9. Nogly, P. 等人。飞秒 X 射线激光捕获细菌视紫红质中的视网膜异构化。科学 361,eaat0094 (2018)。10. Falahati, K.、Tamura, H.、Burghardt, I. 和 Huix-Rotllant, M. 通过非绝热量子动力学实现肌红蛋白中的超快一氧化碳光解和血红素自旋交叉。 Nat Commun 9 , 4502 (2018)。11. Barends, TR 等人。直接观察配体解离后 CO 肌红蛋白中的超快集体运动。Science 350 , 445-50 (2015)。
总结与1型糖尿病(T1D)相关的胰岛素分泌功能的丧失归因于β细胞的免疫介导的破坏。然而,在T1D发作时,患者通常剩下明显的β细胞量,而T细胞胰岛的T细胞浸润零星。因此,我们调查了以下假设:使用来自最近诊断为T1D的器官供体制备的Live Human Pancreas组织切片,T1D中的其余β细胞在很大程度上是功能失调的。β细胞显着减少了Ca 2+动员和胰岛素分泌对葡萄糖的反应。β细胞功能在T细胞浸润和非浸润胰岛中同样受损。固定的组织染色和激光捕获微分胰岛的基因表达分析显示,葡萄糖刺激分泌偶联途径中蛋白质和基因的显着降低。从这些数据中,我们认为在人T1D发病机理期间剩余的β细胞质量发生了功能缺陷。
1995 年 5 月 - 2004 年 8 月 高级副科学家 强生公司,制药和研究开发部 加利福尼亚州圣地亚哥 参与的项目和获得的专业知识: 基因发现:差异显示、cDNA/寡核苷酸微阵列、激光捕获显微切割、RNA 扩增。 药物发现:高通量筛选化合物库以识别药物靶标。 管理职位:领导一个小组为多个研究小组进行微阵列实验。 1992 年 2 月 - 1995 年 5 月 研究技术员 细胞生物学系,斯克里普斯研究所,加州拉霍亚 参与项目: 一种来自拟南芥的新型钙调蛋白调节的 Ca2 + -ATPase(ACA2),具有 N 端自抑制结构域 1991 年 8 月 - 1992 年 2 月 研究助理 中国科学院动物研究所内分泌系,中国北京 1989 年 9 月 - 1991 年 7 月 硕士生 中国科学院遗传与发育研究所,中国北京
尽管黑色素瘤疗法取得了重大进展,但死亡率仍然很高。控制转录后基因表达的微小 RNA 在 BRAF 抑制剂耐药性的产生中发挥作用。该研究旨在评估 miR-410-3p 在维莫非尼 - BRAF 抑制剂反应中的作用。分析了 12 个原发性结节性黑色素瘤的 FFPE 组织样本。利用激光捕获显微切割技术分离肿瘤部分、瞬时组织和邻近健康组织。在人黑色素瘤细胞系 A375、G361 和 SK-MEL1 上进行体外实验。使用 MTT 法测定维莫非尼的 IC50。用 miR-410-3p 模拟物、抗 miR-410-3p 及其非靶向对照转染细胞。ER 应激由 thapsigargin 诱导。使用 qRT-PCR 测定分离 RNA 的表达。我们发现 miR-410-3p 在黑色素瘤组织中下调。维莫非尼可诱导黑色素瘤细胞中的 miR-410-3p 表达。miR-410-3p 水平上调会增加黑色素瘤细胞对维莫非尼的耐药性,而抑制 miR-410-3p 水平则可降低耐药性。内质网应激的诱导会增加 miR-410-3p 水平。miR-410-3p 在体外上调 AXL 的表达,并与 starBase 中的侵袭性表型标志物相关。该研究揭示了一种黑色素瘤耐药性的新机制。维莫非尼通过内质网应激诱导黑色素瘤细胞中的 miR-410-3p。它驱动细胞向侵袭性表型转变,从而对 BRAF 抑制产生反应和耐药性。