摘要背景:具有胆囊癌 (GBC) 风险因素的患者致癌的潜在基因改变仍存在争议,尤其是在胰胆管合流异常 (PBM) 患者中。本研究旨在使用新一代测序 (NGS) 阐明 GBC 风险因素与基因改变之间的关联。方法:我们回顾性分析了 64 例确诊为 GBC (n = 26)、PBM [患有 GBC (n = 8)、不患有 GBC (n = 20)] 和慢性胆囊炎患者的切除组织,作为对照组 (n = 10)。从肿瘤及其周围组织中提取 DNA,通过激光捕获显微切割技术精确分离。通过 NGS 检测 50 个癌症相关基因的基因改变,并与临床信息(包括 PBM 状态)进行比较。结果:GBC组织中最常见的基因变异为TP53(50%),其次是EGFR(20.6%)、RB1(17.6%)和ERBB2(17.6%)。20例(58.8%)检测到可通过分子靶向药物靶向的基因变异。对基因变异及危险因素进行统计分析发现,合并PBM的GBC患者TP53变异率高于非PBM患者(p=0.038),对照组上皮、非GBC的PBM患者上皮、合并PBM的GBC患者瘤周黏膜及合并PBM的GBC患者肿瘤组织中TP53突变率分别为10%、10%、38%和75%(p<0.01)。结论:TP53变异比KRAS变异更能导致PBM患者的癌变。
在这项研究中,我们开发了一个基于单光光学陷阱的表面增强拉曼散射(SERS)光氟分子指纹光谱检测系统。该系统利用单光束光学陷阱在光氟芯片中浓缩游离银纳米颗粒(AGNP),从而显着提高了SERS性能。我们使用COMSOL模拟软件研究了锥形纤维内的光场分布特性,并建立了MATLAB模拟模型,以验证单光束光学陷阱在捕获AGNP方面的有效性,证明了我们方法的理论可行性。为了验证系统的粒子捕获功效,我们通过实验控制了光学陷阱的On-Own状态,以管理颗粒的捕获和释放。实验结果表明,捕获状态中的拉曼信号强度明显高于非捕获状态,这证实了单光束光学陷阱有效地增强了光氟硅烷检测系统的SERS检测能力。此外,我们采用了拉曼映射技术来研究捕获区域对SERS效应的影响,表明激光捕获区域中分子指纹的光谱强度得到了显着改善。我们以10 -9 mol/l的浓度和农药Thiram的浓度成功地检测到了晶体紫罗兰色的拉曼光谱,并在10 -5 mol/L的浓度下进一步证明了单光束光学TRAP在增强分子手指纹状体识别能力的能力的能力。作为集成光电传感系统的关键组成部分,在本研究中开发的光捕获仪具有与便携式高功率激光器和高性能拉曼光谱仪的集成潜力。这种集成有望推进高度集成的技术,并显着提高光电传感系统的整体性能和可移植性。
胰腺导管腺癌是一种高度致命的恶性肿瘤,目前已成为全球第七大癌症死亡原因,死亡率在欧洲和北美最高。在过去 30 年中,5 年生存率有所提高(从 2.5% 上升到 10%),但与所有其他常见癌症类型相比,这一水平仍然非常低。基于可操作突变的晚期胰腺癌靶向疗法令人失望,只有 3-5% 的患者显示出哪怕是短暂的临床益处。然而,除了负责产生经典信号通路的基因突变之外,还存在分子多样性。胰腺癌几乎是唯一一种促进基质其他成分过量产生的癌症,从而形成复杂的肿瘤微环境,有助于肿瘤的发展、进展和对治疗的反应。还描述了各种转录亚型。最值得注意的是,Moffit、Collinson、Bailey、Puleo 和 Chan-Seng-Yue 的经典/胰腺祖细胞和准间充质/基底样/鳞状亚型特征之间存在很强的一致性,这些特征具有潜在的临床影响。通过激光捕获显微镜结合单细胞 RNA 测序对富集的上皮细胞群进行测序,揭示了胰腺癌的潜在基因组进化是同一肿瘤内混合基底样和经典细胞群的基因表达连续性的结果,与突变型 KRAS 中的等位基因失衡有关,转移性肿瘤的拷贝数不稳定程度低于原发性肿瘤。与经典亚型相比,基底样亚型似乎更具化学抗性,生存率较低。化疗和/或放化疗也会丰富基底样亚型。与经典程序相比,鳞状/基底样程序促进免疫浸润。与基底和经典类型细胞相关的免疫浸润是不同的,可能为差异化策略打开大门。单细胞和空间转录组学现在将允许对肿瘤和驻留细胞进行单细胞分析
标题 广泛的人类发育系统发育揭示了多变的胚胎模式 作者 Tim HH Coorens 1* 、Luiza Moore 1,2* 、Philip S. Robinson 1,3 、Rashesh Sanghvi 1 、Joseph Christopher 1 、James Hewinson 1 、Alex Cagan 1 、Thomas RW Oliver 1,4 、Matthew DC Neville 1 、Yvette Hooks 1 、Ayesha Noorani 1 、Thomas J. Mitchell 1,4,5 、Rebecca C. Fitzgerald 6 、Peter J. Campbell 1 、Iñigo Martincorena 1 、Raheleh Rahbari 1 、Michael R. Stratton 1† * 共同第一作者 † 通信地址:mrs@sanger.ac.uk (MRS) 附属机构 1. 威康桑格研究所,欣克斯顿,CB10 1SA,英国 2. 剑桥大学病理学系,剑桥,CB2 0QQ,英国。 3. 剑桥大学儿科系,剑桥,CB2 0QQ,英国。 4. 剑桥大学医院 NHS 基金会,剑桥,CB2 0QQ,英国。 5. 剑桥大学外科系,剑桥,CB2 0QQ,英国。 6. 剑桥大学生物医学园区 MRC 癌症部,剑桥,CB2 OXZ,英国 摘要 从受精卵开始,发育和成人人体内的所有细胞都会不断获得突变。两个不同细胞之间共享的突变意味着共享祖细胞,因此可以用作谱系追踪的自然标记。在这里,我们利用来自多个器官的 511 个激光捕获显微切割样本的全基因组测序,重建了来自三个成人个体的正常组织的广泛系统发育。从系统发育推断出的早期胚胎祖细胞对成人身体的贡献比例通常不同,这种不对称程度因人而异,前两个重建细胞的比例从 56:44 到 92:8 不等。不对称也贯穿后续细胞代,并且同一个体的不同组织之间可能存在差异。系统发育还解决了空间胚胎起源和组织模式的问题,揭示了人类大脑发育的空间效应。结合 11 名男性的数据,我们确定了体细胞和生殖细胞分裂的时间,最早观察到的分离发生在第一次细胞分裂时。这项研究表明,尽管达到了相同的最终组织模式,但早期的瓶颈和谱系承诺会导致个体内部和个体之间的胚胎模式存在很大差异。简介 成年人的所有细胞都来自一个受精卵,在胚胎和胎儿发育过程中,经过精心策划的细胞分裂、细胞运动和细胞分化,并持续一生。追踪细胞谱系可以阐明这些基本的发育过程,并已广泛应用于模型生物。早期的谱系追踪实验依赖于光学显微镜 1 ,一种